ZnO-Photocatalyzed Oxidative Transformation of Diphenylamine. Synergism by TiO2, V2O5, CeO2 and ZnS

Authors

  • Chockalingam Karunakaran CSIR Emeritus Scientist, Department of Chemistry, Annamalai University, Annamalainagar 608002, India

DOI:

https://doi.org/10.29356/jmcs.v59i2.23

Keywords:

Photocatalysis, Semiconductor, Kinetic law, Interparticle charge transfer, N-phenyl-p-benzoquinonimine

Abstract

Diphenylamine (DPA) undergoes photocatalytic transformation on nanoparticulate ZnO surface yielding N-phenyl-p-benzoquinonimine (PBQ). The reaction rate increases with the increase of (i) DPA-concentration, (ii) ZnO-loading, (iii) airflow rate and (iv) light intensity. The formation of PBQ is larger on using UV-C light instead of UV-A light. The photocatalyst is reusable. The mechanism of the photocatalytic transformation has been discussed with a suitable kinetic law. Nanoparticulate TiO2, V2O5, CeO2 and ZnS enhance the ZnO-photocatalyzed PBQ formation indicating interparticle charge transfer in semiconductor mixtures.

Downloads

Download data is not yet available.

References

Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473-486. DOI: https://doi.org/10.1039/C3CS60188A

Palmisano, G.; Garcia-Lopez, E.; Marci, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L. Chem. Commun. 2010, 46, 7074-7089. DOI: https://doi.org/10.1039/c0cc02087g

Shiraishi, Y.; Hirai, T. J. Photochem. Photobiol. C. 2008, 9, 157- 170. DOI: https://doi.org/10.1016/j.jphotochemrev.2008.05.001

Feng, W.; Wu, G.; Li, L.; Guan, N. Green Chem. 2011, 13, 3265- 3272. DOI: https://doi.org/10.1039/c1gc15595d

Yang, M.-Q.; Xu, Y.-J. Phys. Chem. Chem. Phys. 2013, 15, 19102-19118. DOI: https://doi.org/10.1039/c3cp53325e

Zhang, N.; Liu, S.; Fu, X.; Xu, Y.-J. J. Mater. Chem. 2012, 22, 5042-5052. DOI: https://doi.org/10.1039/c2jm15009c

Zanella, A. Postharvest Biol. Technol. 2003, 27, 69-78. DOI: https://doi.org/10.1016/S0925-5214(02)00187-4

Chang, Y. C.; Chang, P. W.; Wang, C. M. J. Phys. Chem. B. 2003, 107, 1628-1633. DOI: https://doi.org/10.1021/jp021852j

Lin, T. S.; Retsky, J. J. Phys. Chem. 1986, 90, 2687-2689. DOI: https://doi.org/10.1021/j100403a026

Karunakaran, C.; Karuthapandian, S. Sol. Energy Mater. Sol. Cells. 2006, 90, 1928-1935. DOI: https://doi.org/10.1016/j.solmat.2005.12.003

Wang, Z. L. Mater. Sci. Eng. R. 2009, 64, 33-71. DOI: https://doi.org/10.1016/j.mser.2009.02.001

Wang, X.; Zhang, Q.; Wan, Q.; Dai, G.; Zhou, C.; Zou, B. J. Phys. Chem. C. 2011, 115, 2769-2775. DOI: https://doi.org/10.1021/jp1096822

Li, Y.; Xie, W.; Hu, X.; Shen, G.; Zhou, X.; Xiang, Y.; Zhao, X.; Fang, P. Langmuir. 2010, 26, 591-597. DOI: https://doi.org/10.1021/la902117c

Karunakaran, C.; Dhanalakshmi, R.; Gomathisankar, P. Int. J. Chem. Kinet. 2009, 41, 716-726. DOI: https://doi.org/10.1002/kin.20444

Karunakaran, C.; Dhanalakshmi, R.; Gomathisankar, P.; Manikandan, G. J. Hazard. Mater. 2010, 176, 799-806. DOI: https://doi.org/10.1016/j.jhazmat.2009.11.105

Karunakaran, C.; Anilkumar, P.; Vinayagamoorthy, P. Spectrochim. Acta A. 2012, 98, 460-465. DOI: https://doi.org/10.1016/j.saa.2012.08.079

Karunakaran, C.; Gomathisankar, P.; Manikandan, G. Indian J. Chem. Technol. 2011, 18, 169-176.

Adams, D. M.; Raynor, J. B. Advanced Practical Inorganic Chemistry, John Wiley, New York, 1965, 54.

Puri, S.; Bansal, W. R.; Sidhu, K. S. Indian J. Chem. 1973, 11, 828.

Bansal, W. R.; Ram, N.; Sidhu, K. S. Indian J. Chem. B. 1976, 14, 123-126.

Fox, M. A.; Chen, C. C. J. Am. Chem. Soc. 1981, 103, 6757-6759. DOI: https://doi.org/10.1021/ja00412a044

Karunakaran, C.; Senthilvelan, S.; Karuthapandian, S. J. Photochem. Photobiol. A. 2005, 172, 207-213. DOI: https://doi.org/10.1016/j.jphotochem.2004.12.010

Vincze, L.; Kemp, T. J. J. Photochem. Photobiol. A. 1995, 87, 257-260. DOI: https://doi.org/10.1016/1010-6030(94)03985-4

Karunakaran, C.; SakthiRaadha, S.; Gomathisankar, P.; Vinayagamoorthy, P. RSC Adv. 2013, 3, 16728-16738. DOI: https://doi.org/10.1039/c3ra41872c

Li, M.; Noriega-Trevino, M. E.; Nino-Martinez, N.; Marambio- Jones, C.; Wang, J.; Damoiseause, R.; Ruiz, F.; Hock, E. M. V. Environ. Sci. Technol. 2011, 45, 8989-8995. DOI: https://doi.org/10.1021/es201675m

Fan, W.; Zhang, Q.; Wang, Y. Phys. Chem. Chem. Phys. 2013, 15, 2632-2649. DOI: https://doi.org/10.1039/c2cp43524a

Tian, J.; Sang, Y.; Zhao, Z.; Zhou, W.; Wang, D.; Kang, X.; Liu, H.; Wang, J.; Chen, S.; Cai, H.; Huang, H. Small. 2013, 9, 3864-3872. DOI: https://doi.org/10.1002/smll.201202346

Lei, Y.; Zhao, G.; Liu, M.; Zhang, Z.; Tong, X.; Cao, T. J. Phys. Chem. C. 2009, 113, 19067-19076. DOI: https://doi.org/10.1021/jp9071179

Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B. 2004, 108, 4818-4822. DOI: https://doi.org/10.1021/jp0487713

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Loading...