Sesuvioside A from Gomphrena celosioides possesses the Dual Anti-gout Actions Via Anti-xanthine Oxidase and Anti-inflammatory Activities

Authors

  • Quang Ngô Văn Vietnam Academy of Science and Technology https://orcid.org/0009-0001-8258-3793
  • Thuy Thanh Thi Thu Vietnam Academy of Science and Technology
  • Luong Dang Vu Vietnam Academy of Science and Technology
  • Cuong Trinh Tat VNU University of Science
  • Ha Nguyen Xuan Vietnam Academy of Science and Technology
  • Cuong Nguyen Manh Vietnam Academy of Science and Technology
  • Phuong Nguyen Thi Mai Vietnam Academy of Science and Technology https://orcid.org/0000-0001-8094-6354

DOI:

https://doi.org/10.29356/jmcs.v69i4.2358

Keywords:

Gomphrena celosioides Mart, sesuvioside A, xanthine oxidase (XO), anti-inflammatory, anti-gout

Abstract

Abstract. Gomphrena celosioides Mart. has been widely used for the treatment of gout in Vietnam. A bio-guided isolation of xanthine oxidase inhibitors revealed that sesuvioside A, the main constituent in the butanol fraction of the aerial parts of G. celosioides, is a potential anti-gout compound.  The anti-gout activity of sesuvioside A, a main constituent isolated from the butanol fraction for the first time was further extensively investigated using in vitro biological assays, including inhibition of xanthine oxidase (XO) activity, nitric oxide (NO), intracellular reactive oxygen species (iROS), pro-inflammatory cytokines productions. The obtained results indicated that sesuvioside A exhibited inhibitory activity against XO and NO production with the IC50 values of 31.6 µM and 18.3 µM, respectively. At concentration of 40.0 µM, the compound significantly reduced iROS level and the production of the pro-inflammatory cytokines TNF-α, IL-6, and IL-8 in the lipopolysaccharide-induced macrophages. A molecular docking study revealed that sesuvioside A strongly binds to the targets XO and p-38 MAPK with the estimated energy of -10.55 kcal/mol and -9.78 kcal/mol, respectively. In conclusion, sesuvioside A from the aerial parts of G. celosioides is a new dual anti-gout agent by expressing its inhibitory effects on XO activity and inflammatory targets. The traditional use of G. celosioides as a remedy for gout was supported by the findings in this study.

 

Resumen. La Gomphrena celosioides Mart. Es muy usada en Vietnam para el tratamiento de la gota (hiperurisemia). A través de un proceso de aislamiento bio-dirigido de inhibidores de la xantina oxidasa (XO), se identificó que el sesuviósido A, el constituyente principal de la fracción butanólica de las partes aéreas de G. celosioides, es un compuesto que mostró actividad farmacológica y es candidato para el desarrollo de medicamentos contra la hiperurisemia. La actividad del sesuviósido A —aislado por primera vez como principal componente de dicha fracción— fue investigada extensamente mediante ensayos biológicos in vitro, incluyendo la inhibición de la actividad de la XO, la producción de óxido nítrico (NO), especies reactivas de oxígeno intracelulares (iROS) y citoquinas proinflamatorias. Los resultados obtenidos indicaron que el sesuviósido A presentó actividad inhibitoria sobre la XO y la producción de NO, con valores de IC₅₀ de 31,6 µM y 18,3 µM, respectivamente. A una concentración de 40,0 µM, el compuesto redujo significativamente los niveles de iROS y la producción de las citoquinas proinflamatorias TNF-α, IL-6 e IL-8 en macrófagos inducidos por lipopolisacáridos. Un estudio de acoplamiento molecular reveló que el sesuviósido A se une fuertemente a los blancos moleculares XO y p38 MAPK, con energías estimadas de -10,55 kcal/mol y -9,78 kcal/mol, respectivamente. En conclusión, el sesuviósido A, aislado de las partes aéreas de G. celosioides, representa un nuevo agente anti-gota dual, al ejercer efectos inhibitorios tanto sobre la actividad de la XO como sobre blancos inflamatorios. Los hallazgos de este estudio respaldan el uso tradicional de G. celosioides como remedio para la gota.

Downloads

Download data is not yet available.

Author Biographies

Quang Ngô Văn, Vietnam Academy of Science and Technology

Institute of Chemistry

Thuy Thanh Thi Thu , Vietnam Academy of Science and Technology

Institute of Chemistry

Luong Dang Vu, Vietnam Academy of Science and Technology

Institute of Chemistry

Cuong Trinh Tat , VNU University of Science

Key Laboratory for Enzyme and Protein Technology

Ha Nguyen Xuan , Vietnam Academy of Science and Technology

Institute of Natural Products Chemistry

Cuong Nguyen Manh , Vietnam Academy of Science and Technology

Institute of Natural Products Chemistry

Phuong Nguyen Thi Mai , Vietnam Academy of Science and Technology

Graduate University of Science and Technology

Institute of Biology, Vietnam Academy of Science and Technology

References

1. Ragab, G.; Elshahaly, M.; Bardin, T. J. Adv. Res. 2017, 8, 495–511 DOI: https://doi.org/10.1016/j.jare.2017.04.008.

2. Huddleston, E. M.; Gaffo, A. L. Curr. Opin. Pharmacol. 2022, 65, 102241 DOI: https://doi.org/10.1016/j.coph.2022.102241.

3. Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Nature. 2006, 440, 237–241 DOI: https://doi.org/10.1038/nature04516.

4. Pouliot, M.; James, M. J.; McColl, S. R.; Naccache, P. H.; Cleland, L. G. Blood. 1998, 91, 1769–1776.

5. So, A.; Thorens, B. J. Clin. Invest. 2010, 120, 1791–1799 DOI: https://doi.org/10.1172/JCI42344.

6. Panche, A. N.; Diwan, A. D.; Chandra, S. R. J. Nutr. Sci. 2016, 5, e47 DOI: https://doi.org/10.1017/jns.2016.41.

7. Borges, F.; Fernandes, E.; Roleira, F. Curr Med Chem. 2002, 9, 195–217 DOI: https://doi.org/10.2174/0929867023371229.

8. Mierziak, J.; Kostyn, K.; Kulma, A. Molecules. 2014, 19, 16240–16265 DOI: https://doi.org/10.3390/molecules191016240.

9. Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. S. Afr. J. Bot. 2021, 137, 257–264 DOI: https://doi.org/10.1016/j.sajb.2020.10.022.

10. Sharma, J. N.; Al-Omran, A.; Parvathy, S. S. Inflammopharmacol. 2007, 15, 252–259 DOI: https://doi.org/10.1007/s10787-007-0013-x.

11. Dejam, A.; Hunter, C. J.; Pelletier, M. M.; Hsu, L. L.; Machado, R. F.; Shiva, S.; Power, G. G.; Kelm, M.; Gladwin, M. T.; Schechter, A. N. Blood. 2005, 106, 734–739 DOI: https://doi.org/10.1182/blood-2005-02-0567.

12. Larsen, F. J.; Weitzberg, E.; Lundberg, J. O.; Ekblom, B. Free Radical Biol. Med. 2010, 48, 342–347 DOI: https://doi.org/10.1016/j.freeradbiomed.2009.11.006.

13. Shiva, S.; Huang, Z.; Grubina, R.; Sun, J.; Ringwood, L. A.; MacArthur, P. H.; Xu, X.; Murphy, E.; Darley-Usmar, V. M.; Gladwin, M. T. Circ. Res. 2007, 100, 654–661 DOI: https://doi.org/10.1161/01.RES.0000260171.52224.6b.

14. Townsend, C. C. Springer: Berlin, Heidelberg. 1993, 70–91 DOI: https://doi.org/10.1007/978-3-662-02899-5_7.

15. Macorini, L. F. B.; Radai, J. A. S.; Maris, R. S.; Silva-Filho, S. E.; Leitao, M. M.; de Andrade, S. F.; Gelves, D. I. A.; Salvador, M. J.; Arena, A. C.; Kassuya, C. A. L. Evid. Based. Complement. Alternat. Med. 2020, 2020, 4170589 DOI: https://doi.org/10.1155/2020/4170589.

16. Tarnam, Y. A.; Ilyas, M.; Begum, T. N. Int. J. Pharma. Res. Rev. 2014. 3, 58-66.

17. de Paula Vasconcelos, P. C.; Spessotto, D. R.; Marinho, J. V.; Salvador, M. J.; Junior, A. G.; Kassuya, C. A. L. J. Ethnopharmacol. 2017, 202, 85–91 DOI: https://doi.org/10.1016/j.jep.2017.03.007.

18. Quang, N.; Phuong, N.; Luong, V.; Huyen, N.; Xuan, D.; Thanh, T. Vietnam J.Chem. 2024, 62 DOI: https://doi.org/10.1002/vjch.202300269.

19. Dosumu, O. O.; Idowu, P. A.; Onocha, P. A.; Ekundayo, O. EXCLI J. 2010, 9, 173–180.

20. Olutola Dosumu, O.; Onocha, P.; Ekundayo, O.; Ali, M. Iran. J. Pharm. Res. 2014, 13, 143–147.

21. Hoi, H. Pharmacogn. J. 2020, 12, 1693–1697 DOI: https://doi.org/10.5530/pj.2020.12.228.

22. Noro, T.; Oda, Y.; Miyase, T.; Ueno, A.; Fukushima, S. Chem. Pharm. Bull. 1983, 31, 3984–3987 DOI: https://doi.org/10.1248/cpb.31.3984.

23. Cheenpracha, S.; Park, E.-J.; Rostama, B.; Pezzuto, J. M.; Chang, L. C. Mar. Drugs. 2010, 8, 429–437 DOI: https://doi.org/10.3390/md8030429.

24. Han, Y.-H.; Chen, D.-Q.; Jin, M.-H.; Jin, Y.-H.; Li, J.; Shen, G.-N.; Li, W.-L.; Gong, Y.-X.; Mao, Y.-Y.; Xie, D.-P.; et al. Appl. Biol. Chem. 2020, 63, 21 DOI: https://doi.org/10.1186/s13765-020-00504-2.

25. Halgren, T. A. J. Comput. Chem. 1999, 20, 720–729 DOI: https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.

26. O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. J. Cheminf. 2011, 3, 33 DOI: https://doi.org/10.1186/1758-2946-3-33.

27. Gill, A. L.; Frederickson, M.; Cleasby, A.; Woodhead, S. J.; Carr, M. G.; Woodhead, A. J.; Walker, M. T.; Congreve, M. S.; Devine, L. A.; Tisi, D.; et al. J. Med. Chem. 2005, 48, 414–426 DOI: https://doi.org/10.1021/jm049575n.

28. Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E. F. Proceedings of the National Academy of Sciences, 2000, 97, 10723–10728 DOI: https://doi.org/10.1073/pnas.97.20.10723.

29. Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455–461 DOI: https://doi.org/10.1002/jcc.21334.

30. Eberhardt, J.; Santos-Martins, D.; Tillack, A. F.; Forli, S. J. Chem. Inf. Model. 2021, 61, 3891–3898 DOI: https://doi.org/10.1021/acs.jcim.1c00203.

31. Forli, S.; Huey, R.; Pique, M. E.; Sanner, M. F.; Goodsell, D. S.; Olson, A. J. Nat. Protoc. 2016, 11, 905–919 DOI: https://doi.org/10.1038/nprot.2016.051.

32. Disadee, W.; Mahidol, C.; Sahakitpichan, P.; Sitthimonchai, S.; Ruchirawat, S.; Kanchanapoom, T. Tetrahedron. 2011, 67, 4221–4226 DOI: https://doi.org/10.1016/j.tet.2011.04.041.

33. Zhou, B.; Yang, Z.; Feng, Q.; Liang, X.; Li, J.; Zanin, M.; Jiang, Z.; Zhong, N. J. Ethnopharmacol. 2017, 199, 60–67 DOI: https://doi.org/10.1016/j.jep.2017.01.038.

34. Ghalib, R. M.; Mehdi, S.; Hashim, R.; Sulaiman, O.; Valkonen, A.; Rissanen, K.; Trifunović, S. J. of Chem. Crystallogr. 2010, 40, 510–513 DOI: https://doi.org/10.1007/s10870-010-9687-9.

35. Mahmoud, I. I.; Marzouk, M. S.; Moharram, F. A.; El-Gindi, M. R.; Hassan, A. M. Phytochemistry. 2001, 58, 1239–1244 DOI: https://doi.org/10.1016/s0031-9422(01)00365-x.

36. Xue, H.; Xu, M.; Gong, D.; Zhang, G. Food. Front. 2023, 4 DOI: https://doi.org/10.1002/fft2.287.

37. Li, J.; Gong, Y.; Li, J.; Fan, L. Food. Chem. 2022, 379, 132100 DOI: https://doi.org/10.1016/j.foodchem.2022.132100.

38. da Silva, S. L.; da Silva, A.; Honório, K. M.; Marangoni, S.; Toyama, M. H.; da Silva, A. B. F. J. Mol. Struct. THEOCHEM. 2004, 684, 1–7 DOI: https://doi.org/10.1016/j.theochem.2004.04.003.

39. Liang, H.; Deng, P.; Ma, Y.-F.; Wu, Y.; Ma, Z.-H.; Zhang, W.; Wu, J.-D.; Qi, Y.-Z.; Pan, X.-Y.; Huang, F.-S.; et al. Evid. Based. Complement. Alternat. Med. 2021, 2021, 8698232 DOI: https://doi.org/10.1155/2021/8698232.

40. Turner, M. D.; Nedjai, B.; Hurst, T.; Pennington, D. J. Biochim. Biophys. Acta. 2014, 1843, 2563–2582 DOI: https://doi.org/10.1016/j.bbamcr.2014.05.014.

41. Zhang, J.; Li, H.; Wang, W.; Li, H. Exp. Ther. Med. 2022, 23, 1–8 DOI: https://doi.org/10.3892/etm.2022.11230.

42. Ying, J.; Zhang, M.; Qiu, X.; Lu, Y. Biomed. Pharmacother. 2018, 103, 381–390 DOI: https://doi.org/10.1016/j.biopha.2018.04.088.

43. Yang, L.; He, J. BMC Complement. Med. Ther. 2022, 22, 55 DOI: https://doi.org/10.1186/s12906-022-03540-1.

44. Huwiler, A.; Wartmann, M.; van den Bosch, H.; Pfeilschifter, J. Br. J. Pharmacol. 2000, 129, 612–618 DOI: https://doi.org/10.1038/sj.bjp.0703077.

×

Downloads

Published

2025-10-01

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.

Loading...