Near-Infrared Untargeted Metabolomics with Unsupervised and Supervised Multivariate Statistical Analysis of Fatty Acid Profiles in Cheeses
DOI:
https://doi.org/10.29356/jmcs.v69i3.2212Keywords:
Near infrared spectroscopy, NIR based metabolomics, cheeses, untargeted metabolomics, saturated, fatty acid (SFA)Abstract
Abstract. The present work describes a workflow for unsupervised Principal Component (PCA) and supervised Partial Least Squares Discriminant (PLS-DA) multivariate statistical analysis (MSA), to analyze Near Infrared (NIR) data matrixes of cheeses from diverse types and geographical origins, with respect to their NIR saturated fatty acid profile. The data set include (A) acquired NIR absorbance spectra, (B) post-processed first derivative NIR spans and (C) post-processed first derivative frequency-selected NIR spans, within a wavelength range of 12500-3600 cm-1. NIR data inputs were adapted for the first time into a format suitable for the stream-lined metabolomics data analysis “MetaboAnalyst”, by converting spectrophotometer raw data format, into a JCAMP-DX IUPAC standard format family for spectral data exchange, in turn transformed into an editable comma-separated values (.csv) format, suitable for metabolomics studies with MetaboAnalyst. The discriminant regions for the first NIR data matrix were five. For the second matrix, discriminant wave-number regions were reduced to three: 10000 to 8000 cm-1 (-CH- overtone), 6000 to 5000 cm-1(-C=O- overtone) and 5000 to 4000 cm-1 (-CH- band). Finally, for the third NIR matrix, refined discriminant regions were taken: 9700 to 8265 (-CH- overtone), 6661 to 4655 cm-1 (-C=O- overtone) and from 4327 to 4000 cm-1 (-CH- band). The PLS-DA model obtained from the first derivative frequency-selected near-infrared spans data matrix showed the best score-plot classification between dairy samples and saturated fatty acid standards. Present results intend to introduce an approach for untargeted and qualitative NIR based metabolomics within a platform with more than 300,000 users to date.
Resumen. El presente describe un flujo de trabajo para realizar análisis estadísticos multivariados (MSA) no supervisados por análisis del componente principal (PCA) y supervisados por análisis discriminante por mínimos cuadrados parciales (PLS-DA), para analizar matrices de datos obtenidos por infrarrojo cercano (NIR) de quesos de diversos tipos y orígenes geográficos, con respecto a sus perfiles NIR de ácidos grasos saturados. El conjunto de datos incluye (A) espectros NIR adquiridos en modo absorbancia, (B) espectros NIR post-procesados por primera derivada y (C) espectros NIR post-procesados por primera derivada y con frecuencias seleccionadas, dentro de un intervalo de longitud de onda entre 12500-3600 cm-1. La entrada de datos NIR fue adaptada por primera vez a un formato legible a la plataforma por internet de análisis metabolómicos “MetaboAnalyst”, convirtiendo el formato de datos espectrofotométricos sin procesar, al formato IUPAC JCAMP-DX estandarizado para intercambio de datos espectrales, transformados posteriormente hacia un formato de valores separados por comas editable (.csv) apropiado para estudios metabolómicos con MetaboAnalyst. Las regiones discriminantes para la primera matriz de datos NIR son cinco. Para la segunda matriz, las regiones de número de onda discriminantes se reducen a tres: 10000 a 8000 cm-1 (sobretono -CH-), 6000 a 5000 cm-1 (sobretono -C=O-) y 5000 a 4000 cm-1 (banda -CH-). Finalmente, para la tercer matriz NIR, se tomaron regiones discriminantes refinadas: 9700 a 8265 (sobretono -CH-), 6661 a 4655 cm-1 (sobretono -C=O-) y de 4327 a 4000 cm-1 (banda -CH-). El modelo PLS-DA obtenido de la matriz de datos de barrido de infrarrojo cercano post-procesados por primera derivada y con frecuencias seleccionadas muestra la mejor clasificación entre los lácteos y los estándares de ácidos grasos saturados. Estos resultados pretenden introducir un método para realizar metabolómica basada en NIR no dirigida y cuantitativa dentro de una plataforma con más de 300000 usuarios al momento.
Downloads
References
Cubero-Leon, E.; Peñalver, R.; Maquet, A. Food Res. Int. 2014, 60, 95–107. DOI: https://doi.org/10.1016/j.foodres.2013.11.041
Marshall, D. D.; Powers, R.; Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. DOI: https://doi.org/10.1016/j.pnmrs.2017.01.001
Beleggia, R.; Platani, C.; Papa, R.; Di Chio, A.; Barros, E.; Mashaba, C.; Wirth, J.; Fammartino, A.; Sautter, C.; Conner, S.; Rauscher, J.; Stewart, D.; Cattivelli, L.; J. Agric. Food Chem. 2011, 59, 9366–9377. DOI: https://doi.org/10.1021/jf2022836
Herbert-Pucheta, J. E.; Lozada-Ramírez, J. D.; Ortega-Regules, A. E.; Hernández, L. R.; Anaya de Parrodi, C.; Molecules. 2021, 26, 4146. DOI: https://doi.org/10.3390/molecules26144146
Saccenti, E.; Hoefsloot, H. C. J.; Smilde, A. K.; Westerhuis, J. A.; Hendriks, M. M.; Metabolomics 2014, 10, 361–374. DOI: https://doi.org/10.1007/s11306-013-0598-6
Kalivodová, A.; Hron, K.; Filzmoser, P.; Najdekr, L.; Janečková, H.; Adam, T.; J. Chemom. 2015, 29, 21–28. DOI: https://doi.org/10.1002/cem.2657
Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S.; EPJ Tech. Instrum. 2015, 2, 1–38. DOI: https://doi.org/10.1140/epjti/s40485-015-0018-6
Chong, J.; Wishart, D. S.; Xia, J.; Curr. Protoc. Bioinforma. 2019, 68, e86. DOI: https://doi.org/10.1002/cpbi.86
Worley, B.; Powers, R.; Curr. Metabolomics. 2013, 1, 92–107. DOI: https://doi.org/10.2174/2213235X11301010092
Pérez-Enciso, M.; Tenenhaus, M.; Hum. Genet. 2003, 112, 581–592.
Rodriguez-Otero, J. L.; Hermida, M.; Centeno, J.; J. Agric. Food Chem. 1997, 45, 2815–2819. DOI: https://doi.org/10.1021/jf960744p
De Marchi, M.; Penasa, M.; Zidi, A.; Manuelian, C.L.; J. Dairy Sci. 2018, 101, 10589-10604. DOI: https://doi.org/10.3168/jds.2018-15202
Downey, G.; Sheehan, E.; Delahunty, C.; O’Callaghan, D.; Guinee, T.; Howard, V.; Int. Dairy J. 2005, 15, 701–709. DOI: https://doi.org/10.1016/j.idairyj.2004.06.013
Manuelian, C. L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M.; Int. Dairy J. 2017, 71, 107–113. DOI: https://doi.org/10.1016/j.idairyj.2017.03.011
González-Martín, M. I.; Severiano-Pérez, P.; Revilla, I.; Vivar-Quintana, A. M.; Hernández-Hierro, J. M.; González-Pérez, C.; Lobos-Ortega, I. A.; Food Chem. 2011, 127, 256–263. DOI: https://doi.org/10.1016/j.foodchem.2010.12.105
González-Martín, M. I.; Vivar-Quintana, A. M.; Revilla, I.; Salvador-Esteban, J. T.; Microchem. J. 2020, 156, 104854. DOI: https://doi.org/10.1016/j.microc.2020.104854
Szumacher-Strabel, M.; Cieślak, A.; Zmora, P.; Pers-Kamczyc, E.; Bielińska, S.; Stanisz, M.; Wójtowski, J.; J. Sci. Food Agric. 2011, 91, 2031–2037. DOI: https://doi.org/10.1002/jsfa.4415
Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J.; J. Vet. Res. 2013, 57, 135–139. DOI: https://doi.org/10.2478/bvip-2013-0026
González-Martín, I.; Hernández-Hierro, J. M.; Salvador-Esteban, J.; González-Pérez, C.; Revilla, I.; Vivar-Quintana, A.; J. Sci. Food Agric. 2011, 91 (6), 1064–1069. DOI: https://doi.org/10.1002/jsfa.4283
Collomb, M.; Bisig, W.; Bütikofer, U.; Sieber, R.; Bregy, M.; Etter, L.; Dairy Sci. Technol. 2008, 88, 631–647. DOI: https://doi.org/10.1051/dst:2008029
Hewavitharana, G. G.; Perera, D. N.; Navaratne, S. B.; Wickramasinghe, I.; Arab. J. Chem. 2020, 13, 6865–6875. DOI: https://doi.org/10.1016/j.arabjc.2020.06.039
Amores, G.; Virto, M.; Separations 2019, 6, 14. DOI: https://doi.org/10.3390/separations6010014
Lobos-Ortega, I.; Hernández-Jiménez, M.; González-Martín, M. I.; Hernández-Hierro, J. M.; Revilla, I.; Vivar-Quintana, A. M.; Food Anal. Methods 2021, 14, 933–943. DOI: https://doi.org/10.1007/s12161-020-01928-8
Madalozzo, E. S.; Sauer, E.; Nagata, N.; J. Food Sci. Technol. 2015, 52, 1649–1655. DOI: https://doi.org/10.1007/s13197-013-1147-z
Shenk, J. S.; Westerhaus, M. O.; Crop Sci. 1991, 31, cropsci1991.0011183X003100060064x. DOI: https://doi.org/10.2135/cropsci1991.0011183X003100060064x
Šašić, S.; Ozaki, Y.; Appl. Spectrosc. 2000, 54, 1327–1338. DOI: https://doi.org/10.1366/0003702001951002
Osborne, B. G.; Fearn, T.; Hindle, P. H., in: Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific & Technical, 1993.
Garrido-Varo, A.; Carrete, R.; Fernández-Cabanás, V.; J. Infrared Spectrosc. 1998, 6, 89–95. DOI: https://doi.org/10.1255/jnirs.125
Hourant, P.; Baeten, V.; Morales, M. T.; Meurens, M.; Aparicio, R.; Appl. Spectrosc. 2000, 54, 1168–1174. DOI: https://doi.org/10.1366/0003702001950733
Subramanian, A.; Prabhakar, V.; Rodriguez-Saona, L. Encycl. Dairy Sci. 2011, 115–124. DOI: https://doi.org/10.1016/B978-0-12-374407-4.00011-X
Ayvaz, H.; Mortas, M.; Dogan, M. A.; Atan, M.; Yildiz Tiryaki, G.; Karagul Yuceer, Y.; J. Food Sci. Technol. 2021, 58, 3981–3992. DOI: https://doi.org/10.1007/s13197-020-04861-0
Curto, B.; Moreno, V.; García-Esteban, J. A.; Blanco, F. J.; González, I.; Vivar, A.; Revilla, I.; Sensors 2020, 20, 3566. DOI: https://doi.org/10.3390/s20123566
Bittante, G.; Patel, N.; Cecchinato, A.; Berzaghi, P.; J. Dairy Sci. 2022, 105, 1817–1836. DOI: https://doi.org/10.3168/jds.2021-20640
Bou-Orm, N.; AlRomaithi, A. A.; Elrmeithi, M.; Ali, F. M.; Nazzal, Y.; Howari, F. M.; Al Aydaroos, F.; Planet. Space Sci. 2020, 188, 104957. DOI: https://doi.org/10.1016/j.pss.2020.104957
Zhao, X.; Song, Y.; Zhang, Y.; Cai, G.; Xue, G.; Liu, Y.; Chen, K.; Zhang, F.; Wang, K.; Zhang, M.; Gao, Y.; Sun, D.; Wang, X.; Li, J.; Molecules 2023, 28 (2), 666. DOI: https://doi.org/10.3390/molecules28020666
Pereira, C. G.; Leite, A. I. N.; Andrade, J.; Bell, M. J. V.; Anjos, V.; LWT 2019, 107, 1–8. DOI: https://doi.org/10.1016/j.lwt.2019.02.072
Sørensen, K. M.; van den Berg, F.; Engelsen, S. B. NIR Data Exploration and Regression by Chemometrics—A Primer. In Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S. B., Eds.; Springer: Singapore, 2021; 127–189. DOI: https://doi.org/10.1007/978-981-15-8648-4_7
Ikehata, A. NIR Optics and Measurement Methods. In Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S. B., Eds.; Springer: Singapore, 2021; 211–233. DOI: https://doi.org/10.1007/978-981-15-8648-4_9
Lucas, A.; Andueza, D.; Ferlay, A.; Int. Dairy J. 2008, 18, 595–604. DOI: https://doi.org/10.1016/j.idairyj.2007.12.001
Soto-Barajas, M. C.; González-Martín, M. I.; Salvador-Esteban, J.; Hernández-Hierro, J. M.; Moreno-Rodilla, V.; Vivar-Quintana, A. M.; Revilla, I.; Ortega, I. L.; Morón-Sancho, R.; Curto-Diego, B.; Talanta. 2013, 116, 50–55. DOI: https://doi.org/10.1016/j.talanta.2013.04.043
Mishra, P.; Roger, J. M.; Rutledge, D. N.; Woltering, E.; Postharvest Biol. Technol. 2020, 168, 111271. DOI: https://doi.org/10.1016/j.postharvbio.2020.111271
Manuelian, C. L.; Currò, S.; Visentin, G.; Penasa, M.; Cassandro, M.; Dellea, C.; Bernardi, M.; De Marchi, M. T.; J. Dairy Sci. 2017, 100, 6084–6089. DOI: https://doi.org/10.3168/jds.2017-12634
Núñez-Sánchez, N.; Martínez-Marín, A. L.; Polvillo, O.; Fernández-Cabanás, V. M.; Carrizosa, J.; Urrutia, B.; Serradilla, J. M.; Food Chem. 2016, 190, 244–252. DOI: https://doi.org/10.1016/j.foodchem.2015.05.083
Zhong, L.; Huang, R.; Gao, L.; Yue, J.; Zhao, B.; Nie, L.; Li, L.; Wu, A.; Zhang, K.; Meng, Z.; Cao, G.; Zhang, H.; Zang, H.; Molecules. 2023, 28, 5672. DOI: https://doi.org/10.3390/molecules28155672
Ozaki, Y.; Morita, S.; Morisawa, Y. Spectral Analysis in the NIR Spectroscopy. In Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S. B., Eds.; Springer: Singapore, 2021; 63–82. DOI: https://doi.org/10.1007/978-981-15-8648-4_4
Silva, L. K. R.; Jesus, J. C.; Onelli, R. R. V.; Conceição, D. G.; Santos, L. S.; Ferrão, S. P. B.; Int. J. Dairy Technol. 2021, 74, 393–403. DOI: https://doi.org/10.1111/1471-0307.12767
Oyedele, O. F.; J. Appl. Stat. 2021, 48, 1816–1832. DOI: https://doi.org/10.1080/02664763.2020.1779192
Llano Suárez, P.; Soldado, A.; González-Arrojo, A.; Vicente, F.; de la Roza-Delgado, B.; J. Food Compos. Anal. 2018, 70, 1–8. DOI: https://doi.org/10.1016/j.jfca.2018.03.003
Khattab, A. R.; Guirguis, H. A.; Tawfik, S. M.; Farag, M. A.; Trends Food Sci. Technol. 2019, 88, 343–360. DOI: https://doi.org/10.1016/j.tifs.2019.03.009
Ianni, A.; Bennato, F.; Martino, C.; Grotta, L.; Martino, G. V.; Molecules 2020, 25, 461. DOI: https://doi.org/10.3390/molecules25030461
Broadhurst, D.; Goodacre, R.; Reinke, S. N.; Kuligowski, J.; Wilson, I. D.; Lewis, M. R.; Dunn, W. B.; Metabolomics 2018, 14, 72. DOI: https://doi.org/10.1007/s11306-018-1367-3
Dudzik, D.; Barbas-Bernardos, C.; García, A.; Barbas, C.; J. Pharm. Biomed. Anal. 2018, 147, 149–173. DOI: https://doi.org/10.1016/j.jpba.2017.07.044
Grassi, S.; Tarapoulouzi, M.; D’Alessandro, A.; Agriopoulou, S.; Strani, L.; Varzakas, T. H.; Foods 2022, 12, 139. DOI: https://doi.org/10.3390/foods12010139
Szterk, A.; Ofiara, K.; Strus, B.; Abdullaev, I.; Ferenc, K.; Sady, M.; Flis, S.; Gajewski, Z. C.; Foods 2022, 11, 1116. DOI: https://doi.org/10.3390/foods11081116
Oliva-Cruz, M.; Mori-Culqui, P. L.; Caetano, A. C.; Goñas, M.; Vilca-Valqui, N. C.; Chavez, S. G.; Front. Nutr. 2021, 8, 677000. DOI: https://doi.org/10.3389/fnut.2021.677000


Downloads
Published
Issue
Section
License
Copyright (c) 2025 Blanca Nayelli Ocampo-Morales, Arturo Hernández-Montes, Jose Enrique Herbert-Pucheta

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
