Carbon Dioxide Capture Using Ionic Liquids Containing Amino Acid-Type Anions. Effect of the Cation, Anion on the Absorption Efficiency
DOI:
https://doi.org/10.29356/jmcs.v68i1.1827Keywords:
Carbon dioxide, ionic liquids, amino acids type anions, absorptionAbstract
Abstract. In this work, the synthesis of twelve ionic liquids (ILs) with imidazolium cation and amino acid-derived anions and their evaluation as carbon dioxide (CO2) absorbents both, in pure form and aqueous solution (30 % of water) are reported and compared with monoetanolamine (MEA), which is a well-known commercial absorbent with wide application in the Petroleum Industry for capturing acid gases. The effect of both cation substituent features such as length and unsaturation of alkyl chains and amino acid structure at the anion on the CO2 absorption efficiency was studied. All the ILs displayed good CO2 absorption efficiency, being the ILs derived from 1-octyl-3-vinylimidazolium the most effective for this purpose, especially with lysinate anion ([OVI][L]); a capture rate of 1501 mg CO2/mol of IL was achieved when it was diluted in water (30 %).
Resumen. En este trabajo se reporta la síntesis de doce líquidos iónicos (LIs) con el catión imidazolio y los aniones derivados de aminoácidos y la evaluación de estos compuestos como absorbentes de dióxido de carbono (CO2), tanto empleando los absorbentes puros, como en solución acuosa (30 % de agua). Los resultados se comparan con los obtenidos con monoetanolamina (MEA), que es un conocido absorbente comercial con amplia aplicación en la Industria del Petróleo en la captura de gases ácidos. Se estudió el efecto de las características de ambos N-sustituyentes de los cationes, como la longitud y la presencia de insaturación en las cadenas de alquilo y la estructura de aminoácidos que conforman los aniones de los LIs estudiados, en la eficiencia de absorción de CO2. Todos los LIs mostraron una buena eficiencia de absorción de CO2, siendo los LIs derivados del 1-octil-3-vinilimidazolio los más efectivos para este fin, especialmente con el anión lisinato ([OVI][L]); se logró una tasa de captura de 1501 mg CO2/mol de LIs cuando el absorbente se diluyó en agua (30 %).
Downloads
References
Torralba-Calleja, E.; Skinner, J.; Gutiérrez-Tauste, D. J. Chem. 2013, 1–16. DOI: http://dx.doi.org/10.1155/2013/473584. DOI: https://doi.org/10.1155/2013/473584
Zambrano-Monserrate, M. A. Sci. Total Environ. 2024, 907, 167853. DOI: https://doi.org/10.1016/j.scitotenv.2023.167852. DOI: https://doi.org/10.1016/j.scitotenv.2023.167852
Lecomte, F.; Broutin, P.; Lebas, A. CO2 Capture Technologies to Reduce Greenhouse Gas Emissions, Ed. Technip, IFP Publications, 2010.
Rahman, F. A.; Aziz, M. M.; Saidur, R.; Bakar, W. A. Bakar, Hainin, M.; Putrajaya R.; Hassan, N. A. Renew. Sustain. Energy Rev. 2017, 71, 112-116. DOI: http://dx.doi.org/10.1016/j.rser.2017.01.011. DOI: https://doi.org/10.1016/j.rser.2017.01.011
Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges, S. W.; Hedges, Champagne, K. J.; Pennline, H. W. Energy Fuels 2009, 23, 4840-4844. DOI: http://dx.doi.org/10.1021/ef9001204. DOI: https://doi.org/10.1021/ef9001204
Koytsoumpa, E. I.; Bergins, C.; Kakaras, E. J. Supercrit. Fluids. 2018, 132, 3-16. DOI: http://dx.doi.org/10.1016/j.supflu.2017.07.029. DOI: https://doi.org/10.1016/j.supflu.2017.07.029
Kenarsari, S. D.; Yang, D.; Jiang, G.; Zhang, S.; Wang, J.; Rusell, A. G.; Wei, Q.; Fan, M. RSC Adv. 2013, 45, 22739. DOI: http://dx.doi.org/10.1039/C3RA43965H. DOI: https://doi.org/10.1039/c3ra43965h
Stanger, R.; Wall, T.; Spörl, R.; Paneru, M.; Grathwohl, S.; Weidmann, M.; Schefflmecht, G.; McDonald, D.; Myohanen, K.; Ritvanen, J.; Rahiala, S.; Hyppanen, T.; Mletzco, J.; Kather, A.; Santos, S. Int. J. Greenhouse Gas Control. 2015, 40, 55–125. DOI: http://dx.doi.org/10.1016/j.ijggc.2015.06.010. DOI: https://doi.org/10.1016/j.ijggc.2015.06.010
Romano, M. C. Int. J. Greenhouse Gas Control. 2013, 18, 57-67. DOI: http://dx.doi.org/10.1016/j.ijggc.2013.07.002. DOI: https://doi.org/10.1016/j.ijggc.2013.07.002
Blauwhoff, P. M.; Versteeg, G. F.; Van Swaaij, W. P. Chem. Eng. Sci. 1984, 39, 207-225. DOI: http://dx.doi.org/10.1016/0009-2509(84)80021-4. DOI: https://doi.org/10.1016/0009-2509(84)80021-4
Vaidya, P. D.; Konduru, P.; Vaidyanathan, M.; Kenig, E. Y. Ind. Eng. Chem. Res. 2010, 49, 11067-11072. DOI: http://dx.doi.org/10.1021/ie100224f. DOI: https://doi.org/10.1021/ie100224f
Saravanamurugan, S.; Kunov-Kruse, A. J.; Fehrmann, R.; Riisager, A. Chem. Sus. Chem. 2014, 7, 897-902. DOI: http://dx.doi.org/10.1002/cssc.201300691.
Ramdin, M.; De Loos, T. W.; Vlugt, T. J. Ind. Eng. Chem. Res. 2012, 51, 8149-8177. DOI: http://dx.doi.org/10.1021/ie3003705. DOI: https://doi.org/10.1021/ie3003705
Luque, R.; Martínez-Palou, R. Environm. Energy Sci. 2014, 7, 2414-2447. DOI: http://dx.doi.org/10.1039/c3ee43837f. DOI: https://doi.org/10.1039/C3EE43837F
Wan, M. M.; Zhu, H. Y.; Li, Y. Y.; Ma, J.; Liu, S.; Zhu, J. H. ACS Appl. Mat. Interfaces. 2014, 6, 12947-12955. DOI: http://dx.doi.org/10.1021/am5028814. DOI: https://doi.org/10.1021/am5028814
Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. Energy Environ. Sci. 2012, 5, 6668-6681. DOI: http://dx.doi.org/10.1039/C2EE21152A. DOI: https://doi.org/10.1039/c2ee21152a
Martínez-Palou, R. J. Mex. Chem. Soc. 2007, 51, 252-264.
Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926–927. DOI: http://dx.doi.org/10.1021/ja017593. DOI: https://doi.org/10.1021/ja017593d
Guzmán, J.; Ortega-Guevara, C.; De León, R. G.; Martínez-Palou, R. Chem. Eng. Technol. 2017, 40, 2339-2345. DOI: http://dx.doi.org/10.1002/ceat.201600593. DOI: https://doi.org/10.1002/ceat.201600593
Shannon, M. S.; Bara, J. E. Sep. Sci. Technol. 2012, 47, 178-188. DOI: http://dx.doi.org/10.1080/01496395.2011.630055. DOI: https://doi.org/10.1080/01496395.2011.630055
Carlisle, T. K.; Bara, J. E.; Gabriel, C. J.; Noble, R. D.; Gin, D. L. Ind. Eng. Chem. Res. 2008, 47, 7005-7012. DOI: http://dx.doi.org/10.1021/ie8001217. DOI: https://doi.org/10.1021/ie8001217
Chen, X.; Luo, X.; Li, J.; Qiu, R.; Lin, J. RSC Adv. 2020, 10, 7751-7757. DOI: http://dx.doi.org/10.1039/c9ra09293e. DOI: https://doi.org/10.1039/C9RA09293E
Wang, C.; Luo, X.; Zhu, X.; Cui,G.; Jiang, D.; Deng, D.; Li, H.; Dai, S. RSC Adv. 2013, 3, 15518-15527. DOI: http://dx.doi.org/10.1039/C3RA42366B. DOI: https://doi.org/10.1039/c3ra42366b
Zhang, Y.; Wu, Z.; Chen, S.; Yu, P.; Luo, Y. Ind. Eng. Chem. Res. 2013, 52, 6069-6075. DOI: http://dx.doi.org/10.1021/ie302928v. DOI: https://doi.org/10.1021/ie302928v
Ren, W.; Sensenich, B.; Scurto, A.M. J. Chem. Thermodyn. 2010, 42, 305-311. DOI: http://dx.doi.org/10.1016/j.jct.2009.08.018. DOI: https://doi.org/10.1016/j.jct.2009.08.018
Feng, Z.; Yuan, G.; Xian-Kun, W.; Jing-Wen, M.; You-Ting, W.; Zhi-Bing, Z. Chem. Eng. J. 2013, 223, 371-378. DOI: http://dx.doi.org/10.1016/j.cej.2013.03.005. DOI: https://doi.org/10.1016/j.cej.2013.03.005
Jing, G.; Zhou, L.; Zhou, Z. Chem. Eng. J. 2012, 181-182, 85-95. DOI: http://dx.doi.org/10.1016/j.cej.2011.11.007. DOI: https://doi.org/10.1016/j.cej.2011.11.007
Sistla, Y. S.; Khanna, A. Chem. Eng. J. 2015, 273, 268-276. DOI: http://dx.doi.org/10.1016/j.cej.2014.09.043. DOI: https://doi.org/10.1016/j.cej.2014.09.043
Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Chem. Rev. 2017, 117, 9625–9673. DOI: https://doi.org/10.1021/acs.chemrev.7b00072. DOI: https://doi.org/10.1021/acs.chemrev.7b00072
Martínez-Palou, R.; Likhanova, N. V.; Olivares-Xometl, O. Pet. Chem. 2014, 54, 595-607. DOI: http://dx.doi.org/10.1134/S0965544114080106. DOI: https://doi.org/10.1134/S0965544114080106
31.Gurkan, B. E., de la Fuente, J. C., Mindrup, E. M., Ficke, L. E., Goodrich, B. F., Price, E. A., Schneider,W. F.; Brennecke, J. F. J. Am. Chem. Soc. 2010, 132, 2116–2117. DOI: http://dx.doi.org/10.10217ja909305t. DOI: https://doi.org/10.1021/ja909305t
Shukla, S. K., Khokarale, S. G., Bui, T. Q., Mikkola, J.-P. T. Front. Mater. 2019, DOI: http://dx.doi.org/10.3389/fmats.2019.00042. DOI: https://doi.org/10.3389/fmats.2019.00042
Aghaie, M.; Rezaei, N.; Zendehboudi, S. Renew. Sustain. Energy Rev. 2018, 96, 502-525. DOI: http://dx.doi.org/10.1016/j.rser.2018.07.004. DOI: https://doi.org/10.1016/j.rser.2018.07.004
CEM corp. web page: https://www.cem.com, accessed in September 2022.
Yamada, T.; Tominari, Y.; Tanaka, S.; Mizuno, M. J. Phys. Chem. B 2017 121, 3121-3129. DOI: http://dx.doi.org/10.1021/acs.jpcb.7b01429. DOI: https://doi.org/10.1021/acs.jpcb.7b01429
Yamada, T.; Tominari, Y.; Tanaka, S.; Mizuno, M.; Fukunaga, K. Materials. 2014, 7, 7409–7422. DOI: http://dx.doi.org/10.3390/ma7117409. DOI: https://doi.org/10.3390/ma7117409
Saravanamurugan, S.; Kunov-Kruse, A. J.; Fehrmann, R.; Riisager, A. ChemSusChem. 2014, 7, 897–902. DOI: http://dx.doi.org/10.1002/cssc.201300691. DOI: https://doi.org/10.1002/cssc.201300691
Ossowicz, P.; Klebeko, J.; Roman, B.; Janus, E.; Rozwadowski, Z. Molecules. 2019, 24, 3252. DOI: http://dx.doi.org/10.3390/molecules24183252. DOI: https://doi.org/10.3390/molecules24183252
Feng, Z.; Cheng-Gang, F.; You-Ting, W.; Yuan-Tao, W.; Ai-Min, L.; Zhi-Bing, Z. Chem. Eng. J. 2010, 160, 691-697. DOI: http://dx.doi.org/10.1016/j.cej.2010.04.013. DOI: https://doi.org/10.1016/j.cej.2010.04.013
36. Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton. T. Phys. Chem. Chem. Phys. 2001, 3, 5192- 5200. DOI: http://dx.doi.org/10.1039/B106900D. DOI: https://doi.org/10.1039/b106900d
Hiremath, V.; Jadhav, A. H.; Lee, H.; Kwon, S.; Seo, J. G. Chem. Eng. J. 2016, 287, 602–617. DOI: http://dx.doi.org/10.1016/j.cej.2015.11.075. DOI: https://doi.org/10.1016/j.cej.2015.11.075
https://libroelectronico.uaa.mx/capitulo-4-aminoacidos-y/curvas-de-titulacion-de-los.html, accessed in September 2022.
Gurau, G.; Rodriguez, H.; Kelley, S.P.; Janiczek, P.; Kalb, R.S.; Rogers, R.D. Angew. Chem. Int. Ed. 2011, 50, 12024–12026. DOI: http://dx.doi.org/10.1002/anie.201105198. DOI: https://doi.org/10.1002/anie.201105198
Zulfiqar, S.; Sarwar, M. I.; Mecerreyes, D. Polymer Chem. 2015, 6, 6435-6451. DOI: http://dx.doi.org/10.1039/C5PY00842E. DOI: https://doi.org/10.1039/C5PY00842E
Shahrom, M. S. R.; Wilfred, C. D.; Taha, A.K.Z. J. Mol. Liq. 2016, 219, 306-312. DOI: http://dx.doi.org/10.1016/j.molliq.2016.02.046. DOI: https://doi.org/10.1016/j.molliq.2016.02.046


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Rafael Martinez-Palou, Gabriela Barbosa Guevara, Nohra Violeta Gallardo Rivas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
