Theoretical Study of the Formation of Complexes Between CO and Nitrogen Heterocycles

Authors

  • Adela Lemus-Santana Centro?de?Investigación?en?Ciencia?Aplicada?y?Tecnología?Avanzada,?Unidad?Legaria,?Instituto?Politécnico?Nacional,?México? D.F.
  • Elizabeth Hernández-Marín Centro?de?Investigación?en?Ciencia?Aplicada?y?Tecnología?Avanzada,?Unidad?Legaria,?Instituto?Politécnico?Nacional,?México? D.F.

DOI:

https://doi.org/10.29356/jmcs.v59i1.12

Keywords:

CO2 scrubbers, DFT, dispersion corrections, imidazole derivatives, pyrazine

Abstract

A density functional theory study was performed to analyze the formation of complexes between CO2 and different nitrogen heterocycles such as imidazole, 2-methylimidazole, benzimidazole, and pyrazine. Two orientations of CO2 were considered: in-plane and top-on with respect to the plane of the heterocyclic ring. The in-plane complexes are more stable than their top-on counterparts, most likely due to electrostatic and Lewis acid-base interactions. The strength of the intermolecular interactions in the top-on complexes can be related to a combination of dispersion, weak electrostatic, dipole-quadrupole and quadrupole-quadrupole interactions, and to some extent to the interactions where some charge transfer from the ring to CO2 is involved. With respect to a potential use as CO2 scrubbers, imidazole and its derivatives appear to be better than pyrazine.

Downloads

Download data is not yet available.

References

http://www.epa.gov/climatechange/ccs/#important, accessed in June 2014.

House, K. Z.; Baclig, A. C.; Ranjan, M.; van Nierop, E. A.; Wilkox, J.; Herzog, H. J. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 20428-20433. DOI: https://doi.org/10.1073/pnas.1012253108

Rochelle, G. T. Science 2009, 325, 1652-1654. DOI: https://doi.org/10.1126/science.1176731

Arstad, B.; Blom, R. Swang, O. J. Phys. Chem. A 2007, 111, 122-1228. DOI: https://doi.org/10.1021/jp065301v

Pera-Titus, M. Chem. Rev. 2014, 114, 1413-1492. DOI: https://doi.org/10.1021/cr400237k

Simmons, J. M.; Wu, H.;Zhou, W.; Yildirim, T. Energy Environ. Sci. 2011, 4, 2177-2185. DOI: https://doi.org/10.1039/c0ee00700e

Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724-781. DOI: https://doi.org/10.1021/cr2003272

Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58-67. DOI: https://doi.org/10.1021/ar900116g

Ruiz, E.; Alvarez, E.; Hoffmann, R.; Bemstein, J. J . Am. Chem. Soc. 1994, 116, 8207-8221. DOI: https://doi.org/10.1021/ja00097a030

Ruiz, E.; Novoa, J. J.; Alvarez, S. J. Phys. Chem. 1995, 99, 2296-2306. DOI: https://doi.org/10.1021/j100008a010

Ruiz, E.; Alvarez, S. Inorg. Chem. 1995, 34, 3260-3269. DOI: https://doi.org/10.1021/ic00116a019

Culp, J. T.; Smith, M. R.; Bittner, E.; Bockrath, B. J. Am. Chem. Soc. 2008, 130, 12427–12434. DOI: https://doi.org/10.1021/ja802474b

Culp, J. T.; Natesakhawat, S.; Smith, M. R.; Bittner, E.; Matranga, C.; Bockrath, B. J. Phys. Chem. C 2008, 112, 7079-7083. DOI: https://doi.org/10.1021/jp710996y

Culp, J. T.; Madden, C.; Kauffman, K.; Shi, F.; Matranga, C. Inorg. Chem. 2013, 52, 4205?4216. DOI: https://doi.org/10.1021/ic301893p

Gonzalez, M.; Lemus-Santana, A. A.; Rodriguez-Hernandez, J.; Knobel, M.; Reguera, E. J. Solid State Chem. 2013, 197, 317-322. DOI: https://doi.org/10.1016/j.jssc.2012.08.026

Gonzalez, M.; Lemus-Santana, A. A.; Rodriguez-Hernandez, J.; Aguirre-Velez, C. I.; Knobel, M.; Reguera, E. J. Solid State Chem. 2013, 204, 128-135. DOI: https://doi.org/10.1016/j.jssc.2013.05.029

Rodriguez-Hernandez, J.; Lemus-Santana, A. A.; Ortiz-López, J.; Jiménez-Sandoval, S.; Reguera, E. J. Solid State Chem. 2010, 183, 105–113. DOI: https://doi.org/10.1016/j.jssc.2009.11.004

Jorgensen, K. R.; Cundari, T. R.; Wilson, A. K. J. Phys. Chem. A 2012, 116, 10403-10411. DOI: https://doi.org/10.1021/jp305347b

Hussain, M. A.; Soujanya, Y.; Sastry, G. N. Environ. Sci.Technol. 2011, 45, 8582-8588. DOI: https://doi.org/10.1021/es2019725

Cundari, T. R.; Wilson, A. K.; Drummond, M. L.; Gonzalez, H. E.; Jorgensen, K. R.; Payne, S.; Braunfeld, J.; De Jesus, M,; Johnson, V. M. J. Chem. Inf. Model. 2009, 49, 2111-2115. DOI: https://doi.org/10.1021/ci9002377

Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. J. Chem. Phys. 2009, 130, 194703. DOI: https://doi.org/10.1063/1.3120909

Torrisi, A.; Mellot-Draznieks, C.; Bell, R. G. J. Chem. Phys. 2010, 132, 044705. DOI: https://doi.org/10.1063/1.3276105

Chen, L.; Cao, F.; Sun, H. Int. J. Quantum Chem .2013, 113, 2261-2266. DOI: https://doi.org/10.1002/qua.24444

Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G. E. ChemPhysChem 2009, 10, 374-383. DOI: https://doi.org/10.1002/cphc.200800583

Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory and Comput. 2006, 2, 364-82. DOI: https://doi.org/10.1021/ct0502763

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. DOI: https://doi.org/10.1063/1.3382344

Grimme, S. WIREs.Comput. Mol. Sci. Chem. 2011, 1, 211-228. DOI: https://doi.org/10.1002/wcms.30

(a) Valdes, H.; Pluha?kova, K.; Pitonák, M.; ?ezá?, J.; Hobza, P. Phys. Chem. Chem. Phys. 2008, 10, 2747-2757. (b) Goerigk, L. Grimme, S. Phys. Chem. Chem. Phys., 2011, 13, 6670-6688. (c) Schneebeli, S. T.; Bochevaron, A. D.; Friesner, R. A. J. Chem. Theory Comput. 2011, 7, 658–668. (d) Zawada, A.; Kaczmarek-K?dziera, A.; Bartkowiak, W. J. Mol. Model. 2012, 18, 3073-3086. (e) Sedlack, R.; Janowski, T.; Pito?ák, M.; ?ezá?, J.; Pulay, P.; Hobza, P. J. Chem. Theory Comput., 2013, 9, 3364–3374.

(a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. (b) W. Kohn, L. Sham. Phys. Rev. 1965, 140, A1133.

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al., Gaussian, Inc., Wallingford CT, 2009.

Becke, A. D. J. Chem. Phys.1993, 98, 5648-5652. DOI: https://doi.org/10.1063/1.464913

Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785-789. DOI: https://doi.org/10.1103/PhysRevB.37.785

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627. DOI: https://doi.org/10.1021/j100096a001

Morokuma, K.; Kitaura, K. Energy Decomposition Analysis of Molecular Interactions. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P., Truhlar, D. G., Eds.; Springer: New York, 1981; p 216. DOI: https://doi.org/10.1007/978-1-4757-9634-6_10

Jensen, F. Introduction to Computational Chemistry. 2nd ed.; John Wiley & Sons: England, 2007; p 226-227.

Boys, S. F.; Barnardy, F. Mol. Phys. 1970, 19, 553-556. DOI: https://doi.org/10.21825/rp.v19i4.19454

Glendening, E.D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.

Arnold, D. W.; Bradforth, S. E.; Kim, E. H.; Neumark, D. M. J. Chem. Phys. 1995, 102, 3493-3509. DOI: https://doi.org/10.1063/1.468575

Aresta, M. Carbon Dioxide Reduction and Uses as a Chemical Feedstock, In Activation of Small Molecules; Tolman, W. B, Ed.; Wiley-VCH: Germany, 2006; p 3. DOI: https://doi.org/10.1002/9783527609352.ch1

Freund, H.-J.; Roberts, M. W. Surf. Sci. Rep. 1996, 25, 225-273. DOI: https://doi.org/10.1016/S0167-5729(96)00007-6

Deshmukh, M. M.; Ohba, M.; Kitagawa, S.; Sakaki, S. J. Am. Chem. Soc. 2013, 135, 4840-4849. DOI: https://doi.org/10.1021/ja400537f

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...