Pt-based Catalysts in the Dry Reforming of Methane: Effect of Support and Metal Precursor on the Catalytic Stability

Authors

DOI:

https://doi.org/10.29356/jmcs.v65i1.1262

Keywords:

Methane dry reforming, Pt/Ceria, metal-support interaction, catalytic stability

Abstract

Abstract. Platinum catalysts (1.5 wt. %) supported over CeO2 and γ-Al2O3 were synthesized via wet impregnation using two different Pt precursors: H2PtCl6 and Pt(acac)2. Catalysts were tested in the dry reforming of methane (DRM) reaction at stoichiometric conditions (CH4/CO2 molar ratio of 1) with two approaches: as a function of temperature (400-800 °C) and as a function of time on-stream (800 °C / 24 h). Platinum supported over ceria catalysts showed better catalytic properties, especially in the stability tests, where deactivation was almost negligible. In contrast, alumina-supported catalysts stability was considerably lower due to the increased formation of carbon residues and the significant Pt particle sintering after reaction at 800 °C for 24 h. Through different characterization techniques (TEM, CO chemisorption), a strong Pt-Ceria interaction was evidenced, which helped in preventing Pt particle agglomeration under reaction conditions and promoted active interface sites. Both features are proposed to be responsible for the Pt/CeO2 catalysts better catalytic performance. The effect of the Pt precursor depends on the nature of the support. In ceria, Cl species benefited the generation of oxygen vacancies and surface ceria reducibility; both features are responsible for the Pt/CeO2 anti-coke properties, thus impacting positively in the catalytic performance of the Pt(-cl)/Ce sample. Conversely, in alumina, these Cl species triggered particle sintering and carbon deposition during the DRM reaction, affecting the Pt(-cl)/Al catalytic performance.

                                              

Resumen. Catalizadores de platino (1.5 % en peso) soportados sobre CeO2 y γ-Al2O3 fueron sintetizados mediante impregnación húmeda utilizando dos diferentes precursores de Pt: H2PtCl6 and Pt(acac)2. Los catalizadores fueron evaluados en la reacción de reformado seco de metano (DRM) en condiciones estequiométricas (razón molar de CH4/CO2 igual a 1) y con dos metodologías: en función de la temperatura de reacción (400-800 °C) y en función del tiempo de reacción (800 °C / 24 h). Los catalizadores de platino soportados sobre ceria mostraron las mejores propiedades catalíticas, especialmente en las pruebas de estabilidad, donde la desactivación fue muy baja. Por el contrario, la estabilidad catalítica de las muestras soportadas en alúmina fue considerablemente menor, debido tanto a la formación de residuos de carbón como al sinterizado de partículas de Pt. Por medio diferentes técnicas de caracterización (TEM, Quimisorción de CO), se evidenció una fuerte interacción Pt-Ceria, la cual ayudó a prevenir la aglomeración de partículas de Pt durante la reacción, además de promover la generación de sitios activos interfaciales. Ambas características se proponen como las responsables de las mejores propiedades catalíticas presentadas por los catalizadores Pt/CeO2. El efecto del precursor del Pt depende de la naturaleza del soporte. En ceria, las especies de cloro beneficiaron la generación de sitios vacantes de oxígeno así como la reducción superficial de la ceria; ambas características son responsables de las propiedades anti-coque en el sistema Pt/CeO2, por lo tanto, estas impactaron positivamente en el desempeño catalítico de la muestra Pt(-cl)/Ce. Por el contrario, en la alúmina, estas especies cloradas aparentemente promovieron el sinterizado de partículas y los depósitos de carbono durante la reacción, lo cual afectó el desempeño catalítico de la muestra Pt(-cl)/Al.

Downloads

Download data is not yet available.

Author Biographies

Daniel G. Araiza, Universidad Nacional Autónoma de México

Instituto de Física

Francisco González-Vigi, Universidad Nacional Autónoma de México

Instituto de Física

Antonio Gómez-Cortés, Universidad Nacional Autónoma de México

Instituto de Física

Gabriela Díaz, Universidad Nacional Autónoma de México

Instituto de Física

References

Cooper, S. A.; Raman, K. K.; Yin, J. J. Account. Public Policy 2018, 37, 226–240. https://doi.org/10.1016/j.jaccpubpol.2018.04.003

Song, C. Catal. Today 2006, 115, 2–32. https://doi.org/10.1016/j.cattod.2006.02.029

Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Shahul Hamid, M. Y. Renew. Sustain. Energy Rev. 2019, 108, 175–193. https://doi.org/10.1016/j.rser.2019.03.054

Wender, I. Fuel Process. Technol. 1996, 48, 189–297.

Lunsford, J. H. Catal. Today 2000, 63, 165–174. https://doi.org/10.1016/S0920-5861(00)00456-9

Er-Rbib, H.; Bouallou, C.; Werkoff, F. Energy Procedia 2012, 29, 156–165. https://doi.org/10.1016/j.egypro.2012.09.020

Carapellucci, R.; Giordano, L. J. Power Sources 2020, 469, 228391. https://doi.org/10.1016/j.jpowsour.2020.228391

Arora, S.; Prasad, R. RSC Adv. 2016, 6, 108668–108688. https://doi.org/10.1039/c6ra20450c

Li, Z.; Wang, Z.; Kawi, S. ChemCatChem 2019, 11, 202–224. https://doi.org/10.1002/cctc.201801266

Singh, R.; Dhir, A.; Mohapatra, S. K.; Mahla, S. K. Biomass Convers. Biorefinery 2020, 10, 567–587. https://doi.org/10.1007/s13399-019-00417-1

Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813–7837. https://doi.org/10.1039/c3cs60395d

Zhang, G.; Liu, J.; Xu, Y.; Sun, Y. Int. J. Hydrogen Energy 2018, 43, 15030–15054. https://doi.org/10.1016/j.ijhydene.2018.06.091

Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Appl. Catal. A Gen. 2010, 377, 16–26. https://doi.org/10.1016/j.apcata.2010.01.013

Damyanova, S.; Pawelec, B.; Arishtirova, K.; Huerta, M. V. M.; Fierro, J. L. G. Appl. Catal. B Environ. 2009, 89, 149–159. https://doi.org/10.1016/j.apcatb.2008.11.035

García-Diéguez, M.; Finocchio, E.; Larrubia, M. Á.; Alemany, L. J.; Busca, G. J. Catal. 2010, 274, 11–20. https://doi.org/10.1016/j.jcat.2010.05.020

Seo, H. G.; Ji, S.; Seo, J.; Kim, S.; Koo, B.; Choi, Y.; Kim, H.; Kim, J. H.; Kim, T. S.; Jung, W. C. J. Alloys Compd. 2020, 835, 155347. https://doi.org/10.1016/j.jallcom.2020.155347

Nagai, Y.; Dohmae, K.; Ikeda, Y.; Takagi, N.; Hara, N.; Tanabe, T.; Guilera, G.; Pascarelli, S.; Newton, M. A.; Takahashi, N.; Shinjoh, H.; Matsumoto, S. Catal. Today 2011, 175, 133–140. https://doi.org/10.1016/j.cattod.2011.02.046

Araiza, D. G.; Arcos, D. G.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2019, No. In Press. https://doi.org/10.1016/j.cattod.2019.06.018

Zhang, Q.; Long, K.; Wang, J.; Zhang, T.; Song, Z.; Lin, Q. Int. J. Hydrogen Energy 2017, 42, 14103–14114. https://doi.org/10.1016/j.ijhydene.2017.04.090

Schubert, M. M.; Hackenberg, S.; Van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, J. J. J. Catal. 2001, 197, 113–122. https://doi.org/10.1006/jcat.2000.3069

Das, S.; Sengupta, M.; Patel, J.; Bordoloi, A. Appl. Catal. A Gen. 2017, 545, 113–126. https://doi.org/10.1016/j.apcata.2017.07.044

Jayabal, S.; Saranya, G.; Geng, D.; Lin, L. Y.; Meng, X. J. Mater. Chem. A 2020, 8, 9420–9446. https://doi.org/10.1039/d0ta01530j

Adamiec, J.; Fiedorow, R. M. J.; Wanke, S. E. J. Catal. 1985, 95, 492–500. https://doi.org/10.1016/0021-9517(85)90127-7

van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955–970. https://doi.org/10.1038/s41929-019-0364-x

Wu, P.; Tan, S.; Moon, J.; Yan, Z.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y.; Abney, C. W.; Wu, Z.; Savara, A.; Momen, A. M.; Jiang, D. en; Su, D.; Li, H.; Zhu, W.; Dai, S.; Zhu, H. Nat. Commun. 2020, 11, 1–10. https://doi.org/10.1038/s41467-020-16674-y

Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science (80-. ). 1981, 211, 1121–1125. https://doi.org/10.1126/science.211.4487.1121

Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; Yao, S.; Xie, J.; Li, Y.; Liu, X.; Ma, D. Angew. Chemie - Int. Ed. 2017, 56, 10761–10765. https://doi.org/10.1002/anie.201705002

Zhao, E. W.; Zheng, H.; Ludden, K.; Xin, Y.; Hagelin-Weaver, H. E.; Bowers, C. R. ACS Catal. 2016, 6, 974–978. https://doi.org/10.1021/acscatal.5b02632

Chen, B.; Zhao, Q.; Yu, L.; Chen, L.; Crocker, M.; Shi, C. Catal. Sci. Technol. 2020, 10, 4571–4579. https://doi.org/10.1039/d0cy00857e

Bonneviot, L.; Haller, G. L. J. Catal. 1991, 130, 359–373. https://doi.org/10.1016/0021-9517(91)90120-S

Trueba, M.; Trasatti, S. P. Eur. J. Inorg. Chem. 2005, No. 17, 3393–3403. https://doi.org/10.1002/ejic.200500348

Borgna, A.; Garetto, T. F.; Apesteguía, C. R.; Le Normand, F.; Moraweck, B. J. Catal. 1999, 186, 433–441. https://doi.org/10.1006/jcat.1999.2557

García-Diéguez, M.; Pieta, I. S.; Herrera, M. C.; Larrubia, M. A.; Malpartida, I.; Alemany, L. J. Catal. Today 2010, 149, 380–387. https://doi.org/10.1016/j.cattod.2009.07.099

Trovarelli, A. Catal. Rev. 1996, 38, 439–520. https://doi.org/10.1080/01614949608006464

Araiza, D. G.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2020, 349, 235–243. https://doi.org/10.1016/j.cattod.2018.03.016

Rodas-Grapaín, A.; Arenas-Alatorre, J.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2005, 107–108, 168–174. https://doi.org/10.1016/j.cattod.2005.07.167

Yang, M.; Guo, H.; Li, Y.; Dang, Q. J. Nat. Gas Chem. 2012, 21, 76–82. https://doi.org/10.1016/S1003-9953(11)60336-8

Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. J. Catal. 2006, 242, 103–109. https://doi.org/10.1016/j.jcat.2006.06.002

Jiang, S. P. Mater. Sci. Eng. A 2006, 418, 199–210. https://doi.org/10.1016/j.msea.2005.11.052

Claudio-Piedras, A.; Ramírez-Zamora, R. M.; Alcántar-Vázquez, B. C.; Gutiérrez-Martínez, A.; Modragón-Galicia, G.; Morales-Anzures, F.; Pérez-Hernández, R. Catal. Today 2019, No. July. https://doi.org/10.1016/j.cattod.2019.08.013

Hu, L.; Boateng, K. A.; Hill, J. M. J. Mol. Catal. A Chem. 2006, 259, 51–60. https://doi.org/10.1016/j.molcata.2006.06.018

Marceau, E.; Lauron-Pernot, H.; Che, M. J. Catal. 2001, 197, 394–405. https://doi.org/10.1006/jcat.2000.3078

Reyes, P.; Oportus, M.; Pecchi, G.; Fréty, R.; Moraweck, B. Catal. Letters 1996, 37, 193–197. https://doi.org/10.1007/BF00807753

Matijevi?, E.; Hsu, W. P. J. Colloid Interface Sci. 1987, 118, 506–523. https://doi.org/10.1016/0021-9797(87)90486-3

Rodríguez-Carvajal, J. Phys. B Phys. Condens. Matter 1993, 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-I

Holmgren, A.; Andersson, B.; Duprez, D. Appl. Catal. B Environ. 1999, 22, 215–230. https://doi.org/10.1016/S0926-3373(99)00047-8

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117

Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Appl. Phys. Lett. 2002, 80, 127–129. https://doi.org/10.1063/1.1430502

Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Chem. Mater. 2003, 15, 2049–2060. https://doi.org/10.1021/cm0204775

Fajardie, F.; Tempere, J. F.; Manoli, J. M.; Djega-Mariadassou, G.; Blanchard, G. J. Chem. Soc. - Faraday Trans. 1998, 94, 3727–3735. https://doi.org/10.1039/a805625k

Liu, J.; Hao, M.; Chen, C.; Du, K.; Zhou, Q.; Zou, S.; Xiao, L.; Fan, J. Appl. Surf. Sci. 2020, 528, 147025. https://doi.org/10.1016/j.apsusc.2020.147025

Pennycook, S. J. Ultramicroscopy 1989, 30, 58–69. https://doi.org/10.1016/0304-3991(89)90173-3

Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. Catal. Today 1999, 50, 175–206. https://doi.org/10.1016/S0920-5861(98)00503-3

Penner, S.; Wang, D.; Podloucky, R.; Schlögl, R.; Hayek, K. Phys. Chem. Chem. Phys. 2004, 6, 5244–5249. https://doi.org/10.1039/b410124c

Datye, A. K.; Kalakkad, D. S.; Yao, M. H.; Smith, D. J. Journal of Catalysis. 1995, pp 148–153. https://doi.org/10.1006/jcat.1995.1196

Hwang, C. P.; Yeh, C. T. J. Mol. Catal. A Chem. 1996, 112, 295–302. https://doi.org/10.1016/1381-1169(96)00127-6

Melchor-Hernández, C.; Gómez-Cortés, A.; Díaz, G. Fuel 2013, 107, 828–835. https://doi.org/10.1016/j.fuel.2013.01.047

Radivojevi?, D.; Seshan, K.; Lefferts, L. Appl. Catal. A Gen. 2006, 301, 51–58. https://doi.org/10.1016/j.apcata.2005.11.016

Lin, W.; Herzing, A. A.; Kiely, C. J.; Wachs, I. E. J. Phys. Chem. C 2008, 112, 5942–5951. https://doi.org/10.1021/jp710591m

Zhou, A.; Wang, J.; Wang, H.; Li, H.; Wang, J.; Shen, M. J. Rare Earths 2018, 36, 257–264. https://doi.org/10.1016/j.jre.2017.07.008

Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C. J. Am. Chem. Soc. 2005, 127, 18010–18011. https://doi.org/10.1021/ja056102c

Querini, C. A.; Fung, S. C. Catal. Today 1997, 37, 277–283. https://doi.org/10.1016/S0920-5861(97)00020-5

Shamsi, A.; Baltrus, J. P.; Spivey, J. J. Appl. Catal. A Gen. 2005, 293, 145–152. https://doi.org/10.1016/j.apcata.2005.07.002

Lercher, J. A.; Bitter, J. H.; Hally, W.; Niessen, W.; Seshan, K. Stud. Surf. Sci. Catal. 1996, 101 A, 463–472. https://doi.org/10.1016/s0167-2991(98)80284-x

Wu, Z.; Li, M.; Overbury, S. H. J. Catal. 2012, 285, 61–73. https://doi.org/10.1016/j.jcat.2011.09.011.

Snoeck, J. W.; Froment, G. F.; Fowles, M. J. Catal. 1997, 169, 240–249. https://doi.org/10.1006/jcat.1997.1634.

Li, Y.; Li, D.; Wang, G. Catal. Today 2011, 162, 1–48. https://doi.org/10.1016/j.cattod.2010.12.042

Published

2021-01-01

Issue

Section

Special Issue Dedicated to Heterogenous Catalysis Research done by Mexican Group