Monoenzymatic Lipase Potentiometric Biosensor for the Food Analysis Based on a pH Sensitive Graphite-epoxy Composite as Transducer

Authors

  • Carlos Andrés Galán-Vidal Universidad Autónoma del Estado de Hidalgo. Área Académica de Química. Carretera Pachuca Tulancingo km 4.5, 42184 Mineral de la Reforma, Hidalgo, México

DOI:

https://doi.org/10.29356/jmcs.v59i1.9

Keywords:

triglycerides, potentiometric biosensor, graphite-epoxy composite, food analysis, Arabic gum extraction

Abstract

In this paper the development of a potentiometric biosensor based on the use of the enzyme lipase immobilized in a Nafion membrane on a graphite-epoxy transducer is reported. This device has been used to quantify triglycerides in food samples from the aqueous extracts obtained by emulsion with Arabic gum. The proposed methodology does not present significant differences with the spectrophotometric determination used as contrast. This work constitutes the first report of a potentiometric biosensor based on the detection of changes of pH using a graphite-epoxy composite transducer and the first potentiometric triglyceride biosensor which is not based in ISFET transducers. The methodology designed is a simple and inexpensive alternative that minimizes the use of organic solvents without affecting the precision and accuracy of the analysis in complex food samples such as butter, chips and pastries.

Downloads

Download data is not yet available.

References

Akon, C.C.; Min D.B. Food Lipids, Marcel Dekker, New York, 2008.

Berglund, L.; Sacks, F.; Brunzell, J.D. Clinical Lipidology. 2013, 8, 1-4. DOI: https://doi.org/10.2217/clp.12.81

Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldber, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; Lennie, T.A.; Levi, M.; Mazzone, T.; Pennathur, S. Circulation. 2011, 123, 2292-2333. DOI: https://doi.org/10.1161/CIR.0b013e3182160726

Pundir, C.S.; Narang, J. International Journal of Biological Macromolecules. 2013, 61, 379-389. DOI: https://doi.org/10.1016/j.ijbiomac.2013.07.026

Dillon, J.T.; Aponte, J.C.; Tarozo, R.; Huang, Y. Journal of Chromatography A. 2012, 1240, 90-95. DOI: https://doi.org/10.1016/j.chroma.2012.03.083

Aparicio, R.; Aparicio-Ru??z, R. Journal of Chromatography A. 2000, 881, 93-104. DOI: https://doi.org/10.1016/S0021-9673(00)00355-1

Turtygin, A.V.; Deineka, V. I.; Deineka, L.A. Journal of Analytical Chemistry. 2013, 68, 558-563. DOI: https://doi.org/10.1134/S1061934813060142

Adlof, R.O.; Menzel, A.; Dorovska-Taran V. Journal of Chromatography A. 2002, 953, 293-297. DOI: https://doi.org/10.1016/S0021-9673(02)00129-2

Redden, P.R.; Huang, Y.S.; Lin, X.; Horrobin, D.F. Journal of Chromatography A. 1995, 694, 381-389. DOI: https://doi.org/10.1016/0021-9673(94)01148-8

Lipp, M. Food Chemistry. 1995, 54, 213-221. DOI: https://doi.org/10.1016/0308-8146(95)00611-L

Bernal, J.L.; Martín, M.T.; Toribio, L. Journal of Chromatography A. 2013, 1313, 24-36. DOI: https://doi.org/10.1016/j.chroma.2013.07.022

Okazaki, M.; Komoriya, N.; Tomoike, H.; Inoue, N.; Usui, S.; Itoh, S.; Hosaki, S. Journal of Chromatography B. 1998, 709, 179-187. DOI: https://doi.org/10.1016/S0378-4347(98)00064-4

Buchgraber, M.; Ulberth, F.; Emons, H.; Anklam, E. European Journal of Lipid Science and Technology. 2004, 106, 621-648. DOI: https://doi.org/10.1002/ejlt.200400986

Simoneau, C.; Hannaert, P.; Anklam, E. Food Chemistry. 1999, 65, 111-116. DOI: https://doi.org/10.1016/S0308-8146(98)00106-X

Buchgraber, M.; Ulberth, F.; Anklam, E. European Journal of Lipid Science and Technology. 2003, 105, 754-760. DOI: https://doi.org/10.1002/ejlt.200300873

Bosque-Sendra, J.M.; Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Paulina de la Mata, A. Analytica Chimica Acta. 2012, 724, 1-11. DOI: https://doi.org/10.1016/j.aca.2012.02.041

Buchgraber, M.; Ulberth, F.; Anklam, E. Journal of Chromatography A. 2004, 1036, 197-203. DOI: https://doi.org/10.1016/j.chroma.2004.03.011

Mayer, B.X.; Zöllner, P.; Lorbeer, E.; Rauter, W. Journal of Separation Science. 2002, 25, 60-66. DOI: https://doi.org/10.1002/1615-9314(20020101)25:1/2<60::AID-JSSC60>3.0.CO;2-A

Byrdwell, W.C.; Emken, E. A.; Neff, W. E.; Adlof, R.O. Lipids. 1999, 31, 919-935. DOI: https://doi.org/10.1007/BF02522685

Gerbig, S.; Takáts, Z. Rapid Communications in Mass Spectrometry. 2010, 24, 2186-2192. DOI: https://doi.org/10.1002/rcm.4630

Grigoriadou, D.; Tsimidou, M.Z. European Journal of Lipid Science and Technology. 2006, 108, 61-69. DOI: https://doi.org/10.1002/ejlt.200500204

Klotzsch, S.G.; McNamara, J.R. Clinical Chemistry. 1990, 36, 1605-1613. DOI: https://doi.org/10.1093/clinchem/36.9.1605

McGowan, M.W.; Artiss, J.D.; Strandbergh, D.R.; Zak, B. Clinical Chemistry. 1983, 29, 538-542. DOI: https://doi.org/10.1093/clinchem/29.3.538

Wu, C.; Liu, X.; Li, Y.; Du, X.; Wang, X.; Xu, P. Biosensors and Bioelectronics. 2014, 53, 26-30. DOI: https://doi.org/10.1016/j.bios.2013.09.040

Jeong, C.Y.; Han, Y.D.; Yoon, J.H.; Yoon, H.C. Journal of Biotechnology. 2014, 175, 7-14. DOI: https://doi.org/10.1016/j.jbiotec.2014.01.036

Phongphut, A.; Sriprachuabwong, C.; Wisitsoraat, A.; Tuantranont, A.; Prichanont, S.; Sritongkham, P. Sensors and Actuators B: Chemical. 2013, 178, 501-507. DOI: https://doi.org/10.1016/j.snb.2013.01.012

Ben Rejeb, I.; Arduini, F.; Amine, A.; Gargouri, M.; Palleschi, G. Analytica Chimica Acta. 2007, 594, 1-8. DOI: https://doi.org/10.1016/j.aca.2007.04.066

Tkac, J.; Svitel, J.; Novak, R.; Sturdik, E. Analytical Letters. 2000, 33, 2441-2452. DOI: https://doi.org/10.1080/00032710008543200

Kumar Reddy, R.R.; Basu, I.; Bhattacharya, E.; Chadha, A. Current Applied Physics. 2003, 3, 155-161. DOI: https://doi.org/10.1016/S1567-1739(02)00194-3

Rodríguez Huerta, L.A.; Galán-Vidal, C.A.; Álvarez Romero, G.A.; Páez-Hernández, M.E. Revista Mexicana de Física. 2006, 52, 17-19

Jurado, E.; Camacho, F.; Luzón, G.; Fernández-Serrano, M.; García-Román, M. Biochemical Engineering Journal. 2008, 40, 473-484. DOI: https://doi.org/10.1016/j.bej.2008.02.002

Helrich K. (ed). Official methods of analysis of the Association of Official Analytical Chemists. AOAC Inc., Arlington, 1990.

Bucolo, G.; David, H. Clinical Chemistry. 1973, 19, 476-482. DOI: https://doi.org/10.1093/clinchem/19.5.476

Sassolas, A.; Blum, L.J.; Leca-Bouvier B.D. Biotechnology Advances. 2012, 30, 489–511. DOI: https://doi.org/10.1016/j.biotechadv.2011.09.003

Lukachova, L.V.; Karyakin, A.A.; Karyakina, E.E.; Gorton, L. Sensors and Actuators B: Chemical. 1997, 44, 356-360. DOI: https://doi.org/10.1016/S0925-4005(97)00201-3

Jue, L.; Lawrence, T.; Drzal; Robert, M.; Worden; Ilsoon, L. Chemistry Materials. 2007, 19, 6240–6246 DOI: https://doi.org/10.1021/cm702133u

Vamvakaki, V.; Chaniotakis, N.A. Sensor and Actuators B. 2007, 126, 193-197. DOI: https://doi.org/10.1016/j.snb.2006.11.042

Wu, Z.; Zhou, W.; Jiang, X.; Ma, J.; Zhang, H.; Song, H. Process Biochemistry. 2012, 47 953–959. DOI: https://doi.org/10.1016/j.procbio.2012.03.004

Fernandez, R.E.; Bhattacharya, E.; Chadha, A. Applied Surface Science. 2008, 254, 4512-4519. DOI: https://doi.org/10.1016/j.apsusc.2008.01.099

Syed, M.; Usman, A.; Nura, O.; Willandera, M.; Danielsson, B. Sensors and Actuators B. 2010, 145, 869–874. DOI: https://doi.org/10.1016/j.snb.2009.12.072

Syed, M.; Usman, A.; Alvia, N. H.; Ibupotoa, H.; Nura, O.; Willandera, M.; Danielsson, B. Sensors and Actuators B. 2011, 152, 241–247. DOI: https://doi.org/10.1016/j.snb.2010.12.015

Tkac, J.; Vostiar, I.; Gorton, I.; Gemeiner, P.; Sturdik, E. Biosensors and Bioelectronics. 2003, 18, 1125-1134. DOI: https://doi.org/10.1016/S0956-5663(02)00244-0

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...