The Cosmochemical Record of Carbonaceous Meteorites: An Evolutionary Story


  • Sandra Pizzarello Arizona State University



Cosmochemical, Life, Earth, Abiotic, Chemistry, Macromolecules


This account traces a lecture given to El Colegio Nacional last March during a Conference “On the origin of life on the Earth” organized to celebrate Darwin’s Bicentennial. It reports on the extraterrestrial organic materials found in carbon-containing meteorites, their composition, likely origin and possible prebiotic contribution to early terrestrial environments. Overall, this abiotic chemistry displays
structures as diverse as kerogen-like macromolecules and simpler soluble compounds, such as amino acids, amines and polyols, and show an isotopic composition that verifies their extraterrestrial origin and lineage to cosmochemical synthetic regimes. Some meteoritic compounds have identical counterpart in the biosphere and encourage the proposal that their exogenous delivery to the early Earth might have
fostered molecular evolution. Particularly suggestive in this regard are the unique l-asymmetry of a number of amino acids in some meteorites as well as the rich and almost exclusively water-soluble compositions discovered for other meteorite types.


Download data is not yet available.

Author Biography

Sandra Pizzarello, Arizona State University

Department of Chemistry & Biochemistry


1. In a letter to Joseph Hooker (1871), Darwin famously wrote: “It is often said that all the conditions for the first production of a living organism are now present, which could ever have been present. But if (and oh! what a big if!) we could conceive in some warm little pond, with all sorts of ammonia and phosphoric salts, light, heat, electricity, &c., present, that a proteine compound was chemically formed ready to undergo still more complex changes, at the present day such matter would be instantly absorbed, which would not have been the case before living creatures were found”.
2. Irvine, W. Origins Life Evol. Biosph. 1997, 28, 365-383.
3. Morbidelli, A. et al., Meteorit. Planet. Sci. 2000, 35, 1309.
4. Levison, H. F.; Bottke, W. F.; Gounelle, M.; Morbidelli, A.; Nesvorn, D.; Tsiganis, K. Nature 2006, 460, 364-366.
5. Hsieh, H. H.; Jewitt, D. Science 2006, 312, 561-563.
6. Mullie, F.; Reisse, J. Top. Curr. Chem. 1987, 139, 83-117.
7. Kvenvolden, K.; Lawless, J.; Pering, K.; Peterson, E.; Flores, J.; Ponnamperuma, C.; Kaplan, J. R.; Moore, C. Nature 1970, 228, 923-926.
8. Pizzarello, S.; Cooper, G. W.; Flynn, G. J. “Meteorites and the Early Solar System II”, 2006, ed. D. S. Lauretta and H. Y. McSween Jr, University of Arizona Press, Tucson, AZ, 625-651.
9. Pizzarello, S.; Huang, Y.; Alexandre, M. D. R. P. Natl. Acad. Sci. USA 2008, 105, 7300-7304.
10. Pizzarello, S.; Holmes W. Geochim. Cosmochim. Acta 2009, 73, 2150-2162.
11. Garvie Garvie, L. A. J.; Buseck P. R. Earth Planet. Sci. Lett. 2004, 224, 431-439.
12. Hayatsu, R.; Matsuoka, S.; Scott, R. G.; Studier, M. H.; Anders E. Geochim. Cosmochim. Acta, 1977, 41, 1325-1339.
13. Yabuta, H.; Williams, L. B.; Cody, G. D.; Alexander, C. M. O’D.; Pizzarello S. Meteorit. Planet. Sci. 2007, 42, 37-48.
14. Cronin, J. R.; Pizzarello, S. Science 1997, 275, 951-955.
15. Pizzarello, S.; Zolensky, M.; Turk, K. A. Geochim. Cosmochim. Acta 2003, 67,1589-1595.
16. Pizzarello, S.; Huang, Y. Geochim. Cosmochim. Acta 2005, 69, 599-605.
17. Roueff, E.; Gerin, M. Space Sci. Rev. 2003, 106, 61-72.
18. Pizzarello, S. Chem. Biodivers. 2007, 4, 680-693.
19. Chyba, C. F.; Sagan, C. Nature 1992, 355, 125-132.
20. Eschenmoser, A. The Scripps Research Institute News and Views, 2008, 8(13),
21. Pizzarello, S.; Weber, A. L. Science 2004, 303, 1151.
22. Weber, A. L.; Pizzarello, S. P. Natl. Acad. Sci. USA 2006, 103, 12713-12717.
23. Pizzarello, S.; Weber, A. L. Origins Life Evol. Biosph. 2010, 40, 3-10.






Regular Articles