Structural and Electronic Characterization of CuxBi2Se3

Authors

  • Paola Arévalo López Universidad Nacional Autónoma de México
  • Francisco Morales Leal Universidad Nacional Autónoma de México
  • Roberto Escudero Derat Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v60i3.91

Keywords:

Thermoelectric materials, bismuth chalcogenides, super-conductivity

Abstract

Topological insulator Bi2Se3 becomes superconductor when it is intercalated with copper. In this work, we present our studies related to the electronic and structural characterization of CuxBi2Se3 with Cu variation from x = 0.11 to 0.20. We show structural and chemical studies performed via X-ray diffraction and photoelectron spectroscopy. Cu insertion modifies the Bi and Se binding energies and induces superconductivity in the compound.

Downloads

Download data is not yet available.

Author Biographies

Paola Arévalo López, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

Francisco Morales Leal, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

Roberto Escudero Derat, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

References

Bell, L. Science 2008, 321, 1457-1461. DOI: https://doi.org/10.1126/science.1158899

Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch, London, 1st edition, 1957.

Goldsmid, H. J.; Douglas, R. W. Br. J. Appl. Phys. 1954, 5, 386-390. DOI: https://doi.org/10.1088/0508-3443/5/11/303

Goldsmid, H. J. in Recent Trends in Thermoelectric Materials Re-search I, Vol. 69, Academic Press, New York, 1st edition, 2001. DOI: https://doi.org/10.1016/S0080-8784(01)80147-2

Kane, C.; Mele, E. Phys. Rev. Lett. 2005, 95, 226801. DOI: https://doi.org/10.1103/PhysRevLett.95.226801

Fu, L.; Kane, C.; Mele, E. Phys. Rev. Lett. 2007, 98, 106803. DOI: https://doi.org/10.1103/PhysRevLett.98.106803

Zhang, H.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Nat. Phys. 2009, 5, 438-442. DOI: https://doi.org/10.1038/nphys1270

Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Oster-walder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P.; Fedorov, A. V.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. Nature 2009, 460, 1101-1105. DOI: https://doi.org/10.1038/nature08234

Tritt, T. M.; Subramanian, M. A. Mater. Res. Bull. 2006, 31, 188-194. DOI: https://doi.org/10.1557/mrs2006.44

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D.

Science 2001, 294, 1488-1495. DOI: https://doi.org/10.1126/science.1065389

Pesin, D.; MacDonald, A. H. Nat. Mater. 2012, 11, 409-416. DOI: https://doi.org/10.1038/nmat3305

Cha, J. J.; Koski, K. J.; Cui, Y. Phys. Status Solidi-R 2013, 7, 15-25. DOI: https://doi.org/10.1002/pssr.201206393

Wiese, J. R.; Muldawer, L. J. Phys. Chem. Solids 1960, 15, 13-16. DOI: https://doi.org/10.1016/0022-3697(60)90094-9

Zhang, G.; Qin, H.; Teng, J.; Guo, J.; Dai, X.; Fang, Z.; Wu, K. H. Appl. Phys. Lett. 2009, 95, 053114. DOI: https://doi.org/10.1063/1.3200237

Zhang, Y.; Chang, C. Z.; He, K.; Wang, L. L.; Chen, X.; Jia, J. F.; Ma, X. C.; Xue, Q. K. Appl. Phys. Lett. 2010, 97, 194102. DOI: https://doi.org/10.1063/1.3516160

Hor, Y. S.; Williams, A. J.; Checkelsky, J. G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H. W.; Yazdani, A.; Ong, N. P.; Cava, R. J. Phys. Rev. Lett. 2010, 104, 057001. DOI: https://doi.org/10.1103/PhysRevLett.104.057001

Wray, L. A.; Xu, S.-Y.; Xia, Y.; Hor, Y. S.; Qian, D.; Fedorov, A. V.; Lin, H.; Bansil, A.; Cava, R. J.; Hasan, M. Z. Nat. Phys. 2010, 6, 855-859. DOI: https://doi.org/10.1038/nphys1762

Hor, Y. S.; Checkelsky, J. G.; Qu, D.; Ong, N. P.; Cava, R. J. J. Phys. Chem. Solids 2011, 72, 572-576. DOI: https://doi.org/10.1016/j.jpcs.2010.10.027

Feutelais, Y.; Legendre, B.; Rodier, N.; Agafonov, V. Mater. Res. Bull. 1993, 28, 591-596. DOI: https://doi.org/10.1016/0025-5408(93)90055-I

Mishra, S. K.; Satpathy, S.; Jepsen, O. J. Phys.: Condens. Matter 1997, 9, 461-470. DOI: https://doi.org/10.1088/0953-8984/9/2/014

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Nat. Phys. 2006, 2, 544-550. DOI: https://doi.org/10.1038/nphys360

Kriener, M.; Segawa, K.; Ren, Z.; Sasaki, S.; Wada, S.; Kuwabata, S.; Ando, Y. Phys. Rev. B 2011, 84, 054513.

Sasaki, S.; Kriener, M.; Segawa, K.; Yada, K.; Tanaka, Y.; Sato, M.; Ando, Y. Phys. Rev. Lett. 2011, 107, 217001. DOI: https://doi.org/10.1103/PhysRevLett.107.217001

Han, M.-K.; Ahn, K.; Kim, H. J.; Rhyee, J.-S.; Kim, S.-J. J. Mater. Chem. 2011, 21, 11365-11370. DOI: https://doi.org/10.1039/c1jm10163c

Li, J. F.; Liu, W. S.; Zhao, L. D.; Zhou, M. NPG Asia Mater. 2010, 2, 152-158. DOI: https://doi.org/10.1038/asiamat.2010.138

sdp v4.1 (32bit). Copyright XPS International, LLC, Compiled 17 January 2004.

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...