What comparisons of natural and chimeric contacts reveal about inhibition of human cathepsins K, L and S by their prosegments

Authors

  • Juan Carlos Martínez-Hernández Universidad Autónoma Metropolitana-Iztapalapa
  • Iris N. Serratos Universidad Autónoma Metropolitana-Iztapalapa
  • César Millán-Pacheco Universidad Autónoma del Estado de Morelos
  • Arturo Rojo-Domínguez Universidad Autónoma Metropolitana-Cuajimalpa
  • Jaqueline Padilla-Zúñiga Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v63i1.684

Keywords:

human cathepsins, cathepsin inhibition, proteinase chimeric complexes, protease prosegments, cysteine proteases

Abstract

Human cathepsins K, L, and S, which are involved in the development of several serious diseases, are strongly inhibited by their related prosegments, to which they are covalently bound or simply forming complexes. In this work, three-dimensional structures of the three natural complexes of these enzymes with their related proregions were constructed, as well as six chimeric complexes of the same three prosegments with their non-cognate enzymes. We made a comparative study of the contacts in all nine structures throughout their active sites. The analysis was performed looking for a structural parameter that could agree with the values of the inhibition constants reported experimentally for each of the nine complexes. We found that this correlating parameter was the difference of the electrostatic energy (involving hydrogen bonds and ion pairs) at the binding interface of a 13-amino acid fragment of the prosegments. We used the results of this work, on the one hand, to identify the key residues involved in the electrostatic intermolecular recognition in each studied complex and, on the other, to explain some results achieved by different research groups on the inhibition of the same enzymes analyzed here. It was found that the natural cathepsin L complex showed a higher number of electrostatic interactions, some of them interconnected, when compared to the other two natural complexes. In addition, the chimeric contacts revealed binding sites that could be used to achieve a more potent inhibition of these cathepsins, avoiding cross-interactions.

Downloads

Download data is not yet available.

Author Biographies

Juan Carlos Martínez-Hernández, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Área de Biofisicoquímica

Iris N. Serratos, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Dr.

César Millán-Pacheco, Universidad Autónoma del Estado de Morelos

Facultad de Farmacia

Dr.

Arturo Rojo-Domínguez, Universidad Autónoma Metropolitana-Cuajimalpa

Profesor Titular C

Departamento de Ciencias Naturales

Jaqueline Padilla-Zúñiga, Universidad Autónoma Metropolitana-Iztapalapa

Profesor Titular B

Departamento de Química

Área de Biofisicoquímica

References

Schick, C.; Pemberton, P.A.; Shi, G.P.; Kamachi, Y.; Cataltepe, S.; Bartuski, A.J.; Gornstein, E.R.; Bromme, D.; Chapman, H.A.; Silverman, G.A. Biochem. 1998, 37, 5258-5266. DOI: https://doi.org/10.1021/bi972521d

Palermo, C.; Joyce. J.A. Trends Pharmacol Sci. 2007, 29, 22-28. DOI: https://doi.org/10.1016/j.tips.2007.10.011

Schornberg, K.; Matsuyama, S.; Kabsch, K.; Delos, S.; Bouton, A.; White, J. J. Virol. 2006, 80, 4174-4178. DOI: https://doi.org/10.1128/JVI.80.8.4174-4178.2006

Lankelma, J.M.; Voorend, D.M.; Barwari, T.; Koetsveld, J.; Van der Spek, A.H.; De Porto, A.P.N.A.; Van Rooijen, G.; Van Noorden, C.J.F. Life Sciences. 2010, 86, 225–233. DOI: https://doi.org/10.1016/j.lfs.2009.11.016

Bromme, D.; Klaus, J.L.; Okamoto, K.; Rasnick, D.; Palmer, J.T. Biochem. J. 1996, 315, 85-89. DOI: https://doi.org/10.1042/bj3150085

Cywin, C.L.; Firestone, R.A.; McNeil, D.W.; Grygon, C.A.; Crane, K.M.; White, D.M.; Kinkade, P.R.; Hopkins, J.L.; Davidson, W.; Labadia, M.E.; Wildeson, J.; Morelock, M.M.; Peterson, J.D.; Raymond, E.L.; Brownand, M.L.; Spero, D.M. Bioorg. Med. Chem. 2003, 11, 733-740. DOI: https://doi.org/10.1016/S0968-0896(02)00468-6

Gauthier, J.Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L.T.; Falgueyret, J.P.; Kimmel, D.B.; Lamontagne, S.; Le´ger, S., Le Riche, T.; Sing, C.; Masse´, L.F.; McKay, D.J.; Nicoll-Griffith, D.A.; Oballa, R.M.; Palmer, J.T.; Percival, M.D.; Riendeau, D.; Robichaud, J.; Rodan, G.A.; Rodan, S.B., Seto, C.; The´rien, M.; Truong, V.L.; Venuti, M.C.; Wesolowski, G.; Young, R.N.; Zambonia, R.; Black, W.C. Bioorg. Med. Chem. Lett. 2008, 18, 923-928. DOI: https://doi.org/10.1016/j.bmcl.2007.12.047

Stoch, S.A.; Wagner, J.A.Clin. Pharmacol. Ther. 2008, 83, 172-176. DOI: https://doi.org/10.1038/sj.clpt.6100450

Löser, R.; Pietzsch, J. Cysteine cathepsins. Front Chem. 2015, 23, 3-37. DOI: https://doi.org/10.3389/fchem.2015.00037

Kramer, L.; Turk, D.; Turk, B. Trends Pharmacol Sci. 2017, 38, 873-889. DOI: https://doi.org/10.1016/j.tips.2017.06.003

Coulombe, R.; Grochulski, P.; Sivaraman, J.; Ménard, R.; Morton, J.S. Cygler, M. EMBO J. 1996, 15, 5492-5503. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb00934.x

Maubach, G.; Schilling, K.; Rommerskirch, W.; Wenz, I.; Schultz, J.E.; Weber, E.; Wiederanders, B. Eur. J. Biochem. 1997, 250, 745-750. DOI: https://doi.org/10.1111/j.1432-1033.1997.00745.x

Billington, C.J.; Mason, P.; Magny, M.C.; Mort, J.S. Biochem. Biophys. Res. Commun. 2000, 276, 924-929. DOI: https://doi.org/10.1006/bbrc.2000.3553

Nomura, T.; Fujisawa, Y. Biochem. Biophys. Res. Commun. 1997, 230, 143-146. DOI: https://doi.org/10.1006/bbrc.1996.5905

Ishidoh, K.; Saido, T.C.; Kawashima, S.; Hirose, M.; Watanabe, S.; Sato, N.; Kominami, E. Biochem. Biophys. Res. Commun. 1998, 252, 202-207. DOI: https://doi.org/10.1006/bbrc.1998.9613

Ménard, R.; Carmona, E.; Takebe, S.; Dufour, E.; Plouffe, C.; Mason, P.; Mort, J.S. J. Biol. Chem. 1998, 273, 4478-4484. DOI: https://doi.org/10.1074/jbc.273.8.4478

Rieman, D.J.; McClung, H.A.; Dodds, R.A.; Hwang, S.M.; Holmes, M.W.; James, I.E.; Drake, F.H.; Gowen, M. Bone. 2001, 28, 282-289. DOI: https://doi.org/10.1016/S8756-3282(00)00445-2

Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. Nucleic Acids Res. 2000, 28, 235-242. DOI: https://doi.org/10.1093/nar/28.1.235

Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun. 1967, 27, 157-162. DOI: https://doi.org/10.1016/S0006-291X(67)80055-X

Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Biochim. Biophys. Acta. 2012, 1824, 68-88. DOI: https://doi.org/10.1016/j.bbapap.2011.10.002

Guay, J.; Falgueyret, J.P.; Ducret, A.; Percival, M.D.; Mancini, J.A. Eur. J. Biochim. 2000, 267, 6311-6318. DOI: https://doi.org/10.1046/j.1432-1327.2000.01730.x

Wiederanders, B. Acta. Biochim. Pol. 2003, 50, 691. DOI: https://doi.org/10.18388/abp.2003_3661

Ang, K.K.H.; Ratnam, J.; Gut, J.; Legac J.; Hansell, E.; Mackey, Z.B.; Skrzypczynska, K.M.; Debnath, A.; Engel, J.C.; Rosenthal, P.J.; McKerrow, J.H.; Arkin, M.R. and Renslo, A.R. PLoSNegl. Trop. Dis. 2011, 5, e1023, doi:10.1371/journal.pntd.0001023. DOI: https://doi.org/10.1371/journal.pntd.0001023

Sosic, I.; Mirkovic, B.; Arenz, K.; Stefane, B.; Kos, J. and Gobec, S. J. Med. Chem. 2012, 56, 521-533. DOI: https://doi.org/10.1021/jm301544x

Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2018.

Gasteiger, J.; Marsili, M. Tetrahedron. 1980, 36, 3219-3228. DOI: https://doi.org/10.1016/0040-4020(80)80168-2

Londe, J.M.L.; Zhao, B.; Janson, C.A.; D'Alessio, K.J.; McQueney, M.S.; Orsini, M.J.; Debouck, C.M.; Smith, W.W. Biochem. 1999, 19. 862-869. DOI: https://doi.org/10.1021/bi9822271

Cygler, M.; Coulombe, R. Crystal structure of procathepsin L doi: 102210/pdb1CS8/pdb.

Kaulmann, G.; Palm, G.J.; Schilling, K.; Hilgenfeld, R.; Wiederanders, B. Protein Sci. 2006, 15; 2619-2629. DOI: https://doi.org/10.1110/ps.062401806

Nucleic Acids Research, Volume 45, Issue D1, 4 January 2017, Pages D158–D169,https://doi.org/10.1093/nar/gkw1099. DOI: https://doi.org/10.1093/nar/gkw1099

Inaoka, T.; Bilbe, G.; Ishibashi, O.; Tezuka, K.; Kumegawa, M.; Kokubo, T. Biochem. Biophys. Res. Commun. 1995, 206, 89-96. DOI: https://doi.org/10.1006/bbrc.1995.1013

Gal, S.; Gottesman, M.M. Biochem. J. 1988, 253, 303-306. DOI: https://doi.org/10.1042/bj2530303

Shi, G.P. Munger, J.S.; Meara, J.P.; Rich, D.H.; Chapman, H.A. J. Biol. Chem. 1992, 267, 7258-7262. DOI: https://doi.org/10.1016/S0021-9258(18)42513-6

Söding, J.; Biegert, A.; Lupas, A.N. Nucleic Acids Res. 2005, 33, 244-248. DOI: https://doi.org/10.1093/nar/gki408

Eisenberg, D.; Lüthy, R.; Bowie, J.U. Methods Enzymol. 1997, 277, 396-404. DOI: https://doi.org/10.1016/S0076-6879(97)77022-8

Laskowski,R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. J. Appl. Cryst. 1993, 26, 283-291. DOI: https://doi.org/10.1107/S0021889892009944

Laskowski, R. A.Nucleic Acids Res. 2009, 37, D355–D359. DOI: https://doi.org/10.1093/nar/gkn860

Li, C.S.; Deschenes, D.; Desmarais, S.; Falgueyret, J.P.; Gauthier, J.Y.; Kimmel, D.B.; Léger, S.; Massé, F.; McGrath, M.E.; McKay, D.J.; Percival, M.D.; Riendeau, D.; Rodan, S.B.; Thérien, M.; Truong, V.L.; Wesolowski, G.; Zamboni, R.; Black, W.C. Bioorg. Med. Chem. Lett. 2006, 16, 1985-1989. DOI: https://doi.org/10.1016/j.bmcl.2005.12.071

Chowdhury, S.F.; Sivaraman, J.; Wang, J.; Devanathan, G.; Lachance, P.; Qi, H.; Ménard, R.; Lefebvre, J.; Konishi, Y.; Cygler, M.; Sulea, T.; Purisima, E.O. J. Med. Chem. 2002, 45, 5321-5329. DOI: https://doi.org/10.1021/jm020238t

Wiener, D.K.; Lee-Dutra, A.; Bembenek, S.; Nguyen, S.; Thurmond, R.L.; Sun, S.; Karlsson, L.; Grice, C.A.; Jones, T.K.; Edwards, J.P. Bioorg. Med. Chem. Lett. 2010, 20, 2379-2382. DOI: https://doi.org/10.1016/j.bmcl.2010.01.103

Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Proc. Natl. Acad. Sci. 2001, 98, 10037-10041. DOI: https://doi.org/10.1073/pnas.181342398

Carmona, E.; Dufour, E.; Plouffe, C.; Takebe, S.; Mason, P.; Mort, J.S.; Ménard, R. Biochem. 1996, 35,8149-8157. DOI: https://doi.org/10.1021/bi952736s

Cappetta, M.; Roth, I.; Díaz, A.; Tort, J.; Roche, L. Biol. Chem. 2002, 383, 1215-122. DOI: https://doi.org/10.1515/BC.2002.134

×

Published

2019-01-10

Issue

Section

Regular Articles
x

Similar Articles

<< < 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Loading...