Synthetic Control of the Photoluminescence Stability of Organolead Halide Perovskites

Authors

  • Daniel J Freppon Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA
  • Long Men Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA
  • Ujjal Bhattacharjee Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA
  • Bryan A Rosales Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
  • Feng Zhu Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
  • Jacob W Petrich Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA
  • Emily A Smith Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA
  • Javier Vela Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA http://orcid.org/0000-0001-5124-6893

DOI:

https://doi.org/10.29356/jmcs.v63i3.623

Keywords:

Surface traps, nanocrystalline perovskites, photostabilty, single nanocrystal analysis, synthetic optimization, optoelectronics

Abstract

An optimized synthetic procedure for preparing photostable nanocrystalline methylammonium lead halide materials is reported. The procedure was developed by adjusting the lead halide to methylammonium/octylammonium halide precursor ratio. At a high precursor ratio (1:3), a blue-shifted photoinduced luminescence peak is measured at 642 nm for CH3NH3PbI3 with 0.01 to 12 mJ pulsed-laser irradiation. The appearance of this peak is reversible over 300 min upon blocking the irradiation. In order to determine if the peak is the result of a phase change, in situ x-ray diffraction measurements were performed. No phase change was measured with an irradiance that causes the appearance of the photoinduced luminescence peak. Luminescence microscpectroscopy measurements showed that the use of a lower precursor ratio (1:1.5) produces CH3NH3PbI3 and CH3NH3PbBr3 perovskites that are stable over 4 min of illumination. Given the lack of a measured phase change, and the dependence on the precursor ratio, the photoinduced luminesce peak may derive from surface trap states. The enhanced photostability of the resulting perovskite nanocrystals produced with the optimized synthetic procedure supports their use in stable optoelectronic devices.

Downloads

Download data is not yet available.

Author Biography

Javier Vela, Department of Chemistry, Iowa State University, and Ames Laboratory, Ames, Iowa 50011, USA

Associate Professor with Tenure, Department of Chemistry, Iowa State University

Faculty Scientist, Ames Laboratory

References

Green, M. A.; Ho-Baillie, A. ACS Energy Letters. 2017, 2, 822-830 DOI: https://doi.org/10.1021/acsenergylett.7b00137

Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F.; Zhu, K. Nature Reviews Materials. 2018, 3, 18017 DOI: https://doi.org/10.1038/natrevmats.2018.17

Sutherland, B. R.; Sargent, E. H. Nature Photonics. 2016, 10, 295 DOI: https://doi.org/10.1038/nphoton.2016.62

Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science. 2015, 347, 967-970 DOI: https://doi.org/10.1126/science.aaa5760

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society. 2009, 131, 6050-6051 DOI: https://doi.org/10.1021/ja809598r

Liu, M.; Johnston, M. B.; Snaith, H. J. Nature. 2013, 501, 395 DOI: https://doi.org/10.1038/nature12509

Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature. 2013, 499, 316-319 DOI: https://doi.org/10.1038/nature12340

Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science. 2014, 345, 542-546 DOI: https://doi.org/10.1126/science.1254050

Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science. 2015, 348, 1234-1237 DOI: https://doi.org/10.1126/science.aaa9272

Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. Science. 2017, 356, 1376-1379 DOI: https://doi.org/10.1126/science.aan2301

Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Journal of the American Chemical Society. 2015, 137, 1530-1538 DOI: https://doi.org/10.1021/ja511132a

Bert, C.; Jeroen, D.; Nicolas, G.; Aslihan, B.; Jan, D. H.; Lien, D. O.; Anitha, E.; Jo, V.; Jean, M.; Edoardo, M.; De, A. F.; Hans?Gerd, B. Advanced Energy Materials. 2015, 5, 1500477

Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Energy & Environmental Science. 2016, 9, 323-356 DOI: https://doi.org/10.1039/C5EE02733K

Samrana, K.; Khaja, N. M.; Michael, G.; Shahzada, A. Angewandte Chemie International Edition. 2014, 53, 2812-2824 DOI: https://doi.org/10.1002/anie.201308719

Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy & Environmental Science. 2014, 7, 2448-2463 DOI: https://doi.org/10.1039/C4EE00942H

Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. Science. 2015, 349, 1518-1521 DOI: https://doi.org/10.1126/science.aac7660

Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. The Journal of Physical Chemistry Letters. 2015, 6, 898-907 DOI: https://doi.org/10.1021/jz502547f

Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garci?a Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. Nano Letters. 2015, 15, 6521-6527 DOI: https://doi.org/10.1021/acs.nanolett.5b02985

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Letters. 2015, 15, 3692-3696 DOI: https://doi.org/10.1021/nl5048779

Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. The Journal of Physical Chemistry Letters. 2014, 5, 1421-1426 DOI: https://doi.org/10.1021/jz5005285

Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. ACS Nano. 2015, 9, 4533–4542 DOI: https://doi.org/10.1021/acsnano.5b01154

Zhu, F.; Men, L.; Guo, Y.; Zhu, Q.; Bhattacharjee, U.; Goodwin, P. M.; Petrich, J. W.; Smith, E. A.; Vela, J. ACS Nano. 2015, 9, 2948–2959 DOI: https://doi.org/10.1021/nn507020s

Yang, Z.; Zhang, W.-H. Chinese Journal of Catalysis. 2014, 35, 983-988 DOI: https://doi.org/10.1016/S1872-2067(14)60162-5

Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Angewandte Chemie International Edition. 2015, 54, 3240–3248 DOI: https://doi.org/10.1002/anie.201410214

Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. Journal of the American Chemical Society. 2015, 137 (13), 4460-4468 DOI: https://doi.org/10.1021/jacs.5b00321

Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nature Nanotechnology. 2014, 9, 687-692 DOI: https://doi.org/10.1038/nnano.2014.149

Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chemical Communications. 2014, 50, 11727-11730 DOI: https://doi.org/10.1039/C4CC04973J

Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J.-P.; Lee, J. W.; Song, J. K. Nano Letters. 2015, 15, 5191-5199 DOI: https://doi.org/10.1021/acs.nanolett.5b01430

Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Letters. 2013, 13, 1764-1769 DOI: https://doi.org/10.1021/nl400349b

Dimesso, L.; Dimamay, M.; Hamburger, M.; Jaegermann, W. Chemistry of Materials. 2014, 26, 6762-6770 DOI: https://doi.org/10.1021/cm503240k

Misra, R. K.; Aharon, S.; Li, B.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. The Journal of Physical Chemistry Letters. 2014, 326-330 DOI: https://doi.org/10.1021/jz502642b

Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chemical Science. 2015, 6, 613-617 DOI: https://doi.org/10.1039/C4SC03141E

Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P.; Cahen, D.; Friend, R. H. The Journal of Physical Chemistry Letters. 2014, 5, 2501-2505 DOI: https://doi.org/10.1021/jz501332v

Gottesman, R.; Gouda, L.; Kalanoor, B. S.; Haltzi, E.; Tirosh, S.; Rosh-Hodesh, E.; Tischler, Y.; Zaban, A.; Quarti, C.; Mosconi, E. The Journal of Physical Chemistry Letters. 2015, 6, 2332-2338 DOI: https://doi.org/10.1021/acs.jpclett.5b00994

Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nature Communications. 2014, 5, 5784 DOI: https://doi.org/10.1038/ncomms6784

Yuan, Y.; Huang, J. Accounts of Chemical Research. 2016, 49, 286-293 DOI: https://doi.org/10.1021/acs.accounts.5b00420

Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Physical Review Applied. 2014, 2, 034007 DOI: https://doi.org/10.1103/PhysRevApplied.2.034007

Wu, X.; Trinh, M. T.; Niesner, D.; Zhu, H.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X.-Y. Journal of the American Chemical Society. 2015, 137, 2089-2096 DOI: https://doi.org/10.1021/ja512833n

Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. The Journal of Physical Chemistry Letters. 2014, 5, 1300-1306 DOI: https://doi.org/10.1021/jz500434p

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science. 2012, 338, 643-647 DOI: https://doi.org/10.1126/science.1228604

Agiorgousis, M. L.; Sun, Y.-Y.; Zeng, H.; Zhang, S. Journal of the American Chemical Society. 2014, 136, 14570-14575 DOI: https://doi.org/10.1021/ja5079305

Sangni, W.; Furong, H.; Liya, Z.; Jianwu, W.; Youling, X.; Peng, J.; Zhuo, C.; Zuodong, Y.; Qi, P.; Zhong, Z. J. ChemNanoMat. 2018, 4, 409-416

Yin, W.-J.; Shi, T.; Yan, Y. Applied Physics Letters. 2014, 104, 063903 DOI: https://doi.org/10.1063/1.4885835

Wan?Jian, Y.; Tingting, S.; Yanfa, Y. Advanced Materials. 2014, 26, 4653-4658 DOI: https://doi.org/10.1002/adma.201306281

Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. The Journal of Physical Chemistry Letters. 2014, 5, 1312-1317 DOI: https://doi.org/10.1021/jz500370k

Shi, T.; Yin, W.-J.; Hong, F.; Zhu, K.; Yan, Y. Applied Physics Letters. 2015, 106, 103902 DOI: https://doi.org/10.1063/1.4914544

Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. Nano Letters. 2014, 14, 6281-6286 DOI: https://doi.org/10.1021/nl502612m

Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Letters. 2014, 14, 3247-3254 DOI: https://doi.org/10.1021/nl500627x

Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano. 2014, 8, 9815-9821 DOI: https://doi.org/10.1021/nn5036476

Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J. Nature Communications. 2015, 6, 7081 DOI: https://doi.org/10.1038/ncomms8081

Bhattacharjee, U.; Freppon, D.; Men, L.; Vela, J.; Smith, E. A.; Petrich, J. W. ChemPhysChem. 2017, 18 (18), 2526-2532 DOI: https://doi.org/10.1002/cphc.201700580

Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Resch-Genger, U. Analytical Chemistry. 2009, 81, 6285-6294 DOI: https://doi.org/10.1021/ac900308v

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mi?nguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Journal of the American Chemical Society. 2014, 136, 850-853 DOI: https://doi.org/10.1021/ja4109209

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. ACS Nano. 2016, 10, 2071-2081 DOI: https://doi.org/10.1021/acsnano.5b06295

Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. The Journal of Physical Chemistry Letters. 2016, 7, 1368-1373 DOI: https://doi.org/10.1021/acs.jpclett.6b00433

Rosales, B. A.; Hanrahan, M. P.; Boote, B. W.; Rossini, A. J.; Smith, E. A.; Vela, J. ACS Energy Letters. 2017, 2, 906-914 DOI: https://doi.org/10.1021/acsenergylett.6b00674

Fedeli, P.; Gazza, F.; Calestani, D.; Ferro, P.; Besagni, T.; Zappettini, A.; Calestani, G.; Marchi, E.; Ceroni, P.; Mosca, R. The Journal of Physical Chemistry C. 2015, 119, 21304-21313 DOI: https://doi.org/10.1021/acs.jpcc.5b03923

Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Solid State Communications. 2003, 127, 619-623 DOI: https://doi.org/10.1016/S0038-1098(03)00566-0

Pellet, N.; Teuscher, J.; Maier, J.; Grätzel, M. Chemistry of Materials. 2015, 27, 2181-2188 DOI: https://doi.org/10.1021/acs.chemmater.5b00281

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science. 2013, 342, 341-344 DOI: https://doi.org/10.1126/science.1243982

Freppon, D. J.; Men, L.; Burkhow, S. J.; Petrich, J. W.; Vela, J.; Smith, E. A. Journal of Materials Chemistry C. 2017, 5, 118-126 DOI: https://doi.org/10.1039/C6TC03886G

Hu, F., Yin, C., Zhang, H., Sun, C., Yu, W.W., Zhang, C., Wang, X., Zhang, Y. and Xiao, M., Nano Letters. 2016. 16(10), 6425-6430 DOI: https://doi.org/10.1021/acs.nanolett.6b02874

Raino?, G., Nedelcu, G., Protesescu, L., Bodnarchuk, M.I., Kovalenko, M.V., Mahrt, R.F., Sto?ferle, T. ACS Nano. 2016 10(2), 2485-2490. DOI: https://doi.org/10.1021/acsnano.5b07328

×

Additional Files

Published

2019-10-17
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...