Synthetic Control of the Photoluminescence Stability of Organolead Halide Perovskites
DOI:
https://doi.org/10.29356/jmcs.v63i3.623Keywords:
Surface traps, nanocrystalline perovskites, photostabilty, single nanocrystal analysis, synthetic optimization, optoelectronicsAbstract
An optimized synthetic procedure for preparing photostable nanocrystalline methylammonium lead halide materials is reported. The procedure was developed by adjusting the lead halide to methylammonium/octylammonium halide precursor ratio. At a high precursor ratio (1:3), a blue-shifted photoinduced luminescence peak is measured at 642 nm for CH3NH3PbI3 with 0.01 to 12 mJ pulsed-laser irradiation. The appearance of this peak is reversible over 300 min upon blocking the irradiation. In order to determine if the peak is the result of a phase change, in situ x-ray diffraction measurements were performed. No phase change was measured with an irradiance that causes the appearance of the photoinduced luminescence peak. Luminescence microscpectroscopy measurements showed that the use of a lower precursor ratio (1:1.5) produces CH3NH3PbI3 and CH3NH3PbBr3 perovskites that are stable over 4 min of illumination. Given the lack of a measured phase change, and the dependence on the precursor ratio, the photoinduced luminesce peak may derive from surface trap states. The enhanced photostability of the resulting perovskite nanocrystals produced with the optimized synthetic procedure supports their use in stable optoelectronic devices.
Downloads
References
Green, M. A.; Ho-Baillie, A. ACS Energy Letters. 2017, 2, 822-830 DOI: https://doi.org/10.1021/acsenergylett.7b00137
Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F.; Zhu, K. Nature Reviews Materials. 2018, 3, 18017 DOI: https://doi.org/10.1038/natrevmats.2018.17
Sutherland, B. R.; Sargent, E. H. Nature Photonics. 2016, 10, 295 DOI: https://doi.org/10.1038/nphoton.2016.62
Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Science. 2015, 347, 967-970 DOI: https://doi.org/10.1126/science.aaa5760
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Journal of the American Chemical Society. 2009, 131, 6050-6051 DOI: https://doi.org/10.1021/ja809598r
Liu, M.; Johnston, M. B.; Snaith, H. J. Nature. 2013, 501, 395 DOI: https://doi.org/10.1038/nature12509
Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature. 2013, 499, 316-319 DOI: https://doi.org/10.1038/nature12340
Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science. 2014, 345, 542-546 DOI: https://doi.org/10.1126/science.1254050
Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science. 2015, 348, 1234-1237 DOI: https://doi.org/10.1126/science.aaa9272
Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. Science. 2017, 356, 1376-1379 DOI: https://doi.org/10.1126/science.aan2301
Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Journal of the American Chemical Society. 2015, 137, 1530-1538 DOI: https://doi.org/10.1021/ja511132a
Bert, C.; Jeroen, D.; Nicolas, G.; Aslihan, B.; Jan, D. H.; Lien, D. O.; Anitha, E.; Jo, V.; Jean, M.; Edoardo, M.; De, A. F.; Hans?Gerd, B. Advanced Energy Materials. 2015, 5, 1500477
Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J. Energy & Environmental Science. 2016, 9, 323-356 DOI: https://doi.org/10.1039/C5EE02733K
Samrana, K.; Khaja, N. M.; Michael, G.; Shahzada, A. Angewandte Chemie International Edition. 2014, 53, 2812-2824 DOI: https://doi.org/10.1002/anie.201308719
Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy & Environmental Science. 2014, 7, 2448-2463 DOI: https://doi.org/10.1039/C4EE00942H
Dou, L.; Wong, A. B.; Yu, Y.; Lai, M.; Kornienko, N.; Eaton, S. W.; Fu, A.; Bischak, C. G.; Ma, J.; Ding, T. Science. 2015, 349, 1518-1521 DOI: https://doi.org/10.1126/science.aac7660
Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. The Journal of Physical Chemistry Letters. 2015, 6, 898-907 DOI: https://doi.org/10.1021/jz502547f
Sichert, J. A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K. Z.; Garci?a Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J. K. Nano Letters. 2015, 15, 6521-6527 DOI: https://doi.org/10.1021/acs.nanolett.5b02985
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nano Letters. 2015, 15, 3692-3696 DOI: https://doi.org/10.1021/nl5048779
Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D.-D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J.; Atatüre, M.; Phillips, R. T.; Friend, R. H. The Journal of Physical Chemistry Letters. 2014, 5, 1421-1426 DOI: https://doi.org/10.1021/jz5005285
Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-g.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. ACS Nano. 2015, 9, 4533–4542 DOI: https://doi.org/10.1021/acsnano.5b01154
Zhu, F.; Men, L.; Guo, Y.; Zhu, Q.; Bhattacharjee, U.; Goodwin, P. M.; Petrich, J. W.; Smith, E. A.; Vela, J. ACS Nano. 2015, 9, 2948–2959 DOI: https://doi.org/10.1021/nn507020s
Yang, Z.; Zhang, W.-H. Chinese Journal of Catalysis. 2014, 35, 983-988 DOI: https://doi.org/10.1016/S1872-2067(14)60162-5
Stranks, S. D.; Nayak, P. K.; Zhang, W.; Stergiopoulos, T.; Snaith, H. J. Angewandte Chemie International Edition. 2015, 54, 3240–3248 DOI: https://doi.org/10.1002/anie.201410214
Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. Journal of the American Chemical Society. 2015, 137 (13), 4460-4468 DOI: https://doi.org/10.1021/jacs.5b00321
Tan, Z.-K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H. Nature Nanotechnology. 2014, 9, 687-692 DOI: https://doi.org/10.1038/nnano.2014.149
Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Chemical Communications. 2014, 50, 11727-11730 DOI: https://doi.org/10.1039/C4CC04973J
Jang, D. M.; Park, K.; Kim, D. H.; Park, J.; Shojaei, F.; Kang, H. S.; Ahn, J.-P.; Lee, J. W.; Song, J. K. Nano Letters. 2015, 15, 5191-5199 DOI: https://doi.org/10.1021/acs.nanolett.5b01430
Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Letters. 2013, 13, 1764-1769 DOI: https://doi.org/10.1021/nl400349b
Dimesso, L.; Dimamay, M.; Hamburger, M.; Jaegermann, W. Chemistry of Materials. 2014, 26, 6762-6770 DOI: https://doi.org/10.1021/cm503240k
Misra, R. K.; Aharon, S.; Li, B.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. The Journal of Physical Chemistry Letters. 2014, 326-330 DOI: https://doi.org/10.1021/jz502642b
Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chemical Science. 2015, 6, 613-617 DOI: https://doi.org/10.1039/C4SC03141E
Sadhanala, A.; Deschler, F.; Thomas, T. H.; Dutton, S. E.; Goedel, K. C.; Hanusch, F. C.; Lai, M. L.; Steiner, U.; Bein, T.; Docampo, P.; Cahen, D.; Friend, R. H. The Journal of Physical Chemistry Letters. 2014, 5, 2501-2505 DOI: https://doi.org/10.1021/jz501332v
Gottesman, R.; Gouda, L.; Kalanoor, B. S.; Haltzi, E.; Tirosh, S.; Rosh-Hodesh, E.; Tischler, Y.; Zaban, A.; Quarti, C.; Mosconi, E. The Journal of Physical Chemistry Letters. 2015, 6, 2332-2338 DOI: https://doi.org/10.1021/acs.jpclett.5b00994
Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nature Communications. 2014, 5, 5784 DOI: https://doi.org/10.1038/ncomms6784
Yuan, Y.; Huang, J. Accounts of Chemical Research. 2016, 49, 286-293 DOI: https://doi.org/10.1021/acs.accounts.5b00420
Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Physical Review Applied. 2014, 2, 034007 DOI: https://doi.org/10.1103/PhysRevApplied.2.034007
Wu, X.; Trinh, M. T.; Niesner, D.; Zhu, H.; Norman, Z.; Owen, J. S.; Yaffe, O.; Kudisch, B. J.; Zhu, X.-Y. Journal of the American Chemical Society. 2015, 137, 2089-2096 DOI: https://doi.org/10.1021/ja512833n
Wehrenfennig, C.; Liu, M.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. The Journal of Physical Chemistry Letters. 2014, 5, 1300-1306 DOI: https://doi.org/10.1021/jz500434p
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science. 2012, 338, 643-647 DOI: https://doi.org/10.1126/science.1228604
Agiorgousis, M. L.; Sun, Y.-Y.; Zeng, H.; Zhang, S. Journal of the American Chemical Society. 2014, 136, 14570-14575 DOI: https://doi.org/10.1021/ja5079305
Sangni, W.; Furong, H.; Liya, Z.; Jianwu, W.; Youling, X.; Peng, J.; Zhuo, C.; Zuodong, Y.; Qi, P.; Zhong, Z. J. ChemNanoMat. 2018, 4, 409-416
Yin, W.-J.; Shi, T.; Yan, Y. Applied Physics Letters. 2014, 104, 063903 DOI: https://doi.org/10.1063/1.4885835
Wan?Jian, Y.; Tingting, S.; Yanfa, Y. Advanced Materials. 2014, 26, 4653-4658 DOI: https://doi.org/10.1002/adma.201306281
Kim, J.; Lee, S.-H.; Lee, J. H.; Hong, K.-H. The Journal of Physical Chemistry Letters. 2014, 5, 1312-1317 DOI: https://doi.org/10.1021/jz500370k
Shi, T.; Yin, W.-J.; Hong, F.; Zhu, K.; Yan, Y. Applied Physics Letters. 2015, 106, 103902 DOI: https://doi.org/10.1063/1.4914544
Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. Nano Letters. 2014, 14, 6281-6286 DOI: https://doi.org/10.1021/nl502612m
Abate, A.; Saliba, M.; Hollman, D. J.; Stranks, S. D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H. J. Nano Letters. 2014, 14, 3247-3254 DOI: https://doi.org/10.1021/nl500627x
Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. ACS Nano. 2014, 8, 9815-9821 DOI: https://doi.org/10.1021/nn5036476
Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J. Nature Communications. 2015, 6, 7081 DOI: https://doi.org/10.1038/ncomms8081
Bhattacharjee, U.; Freppon, D.; Men, L.; Vela, J.; Smith, E. A.; Petrich, J. W. ChemPhysChem. 2017, 18 (18), 2526-2532 DOI: https://doi.org/10.1002/cphc.201700580
Grabolle, M.; Spieles, M.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Resch-Genger, U. Analytical Chemistry. 2009, 81, 6285-6294 DOI: https://doi.org/10.1021/ac900308v
Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mi?nguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Journal of the American Chemical Society. 2014, 136, 850-853 DOI: https://doi.org/10.1021/ja4109209
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. ACS Nano. 2016, 10, 2071-2081 DOI: https://doi.org/10.1021/acsnano.5b06295
Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. The Journal of Physical Chemistry Letters. 2016, 7, 1368-1373 DOI: https://doi.org/10.1021/acs.jpclett.6b00433
Rosales, B. A.; Hanrahan, M. P.; Boote, B. W.; Rossini, A. J.; Smith, E. A.; Vela, J. ACS Energy Letters. 2017, 2, 906-914 DOI: https://doi.org/10.1021/acsenergylett.6b00674
Fedeli, P.; Gazza, F.; Calestani, D.; Ferro, P.; Besagni, T.; Zappettini, A.; Calestani, G.; Marchi, E.; Ceroni, P.; Mosca, R. The Journal of Physical Chemistry C. 2015, 119, 21304-21313 DOI: https://doi.org/10.1021/acs.jpcc.5b03923
Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Solid State Communications. 2003, 127, 619-623 DOI: https://doi.org/10.1016/S0038-1098(03)00566-0
Pellet, N.; Teuscher, J.; Maier, J.; Grätzel, M. Chemistry of Materials. 2015, 27, 2181-2188 DOI: https://doi.org/10.1021/acs.chemmater.5b00281
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science. 2013, 342, 341-344 DOI: https://doi.org/10.1126/science.1243982
Freppon, D. J.; Men, L.; Burkhow, S. J.; Petrich, J. W.; Vela, J.; Smith, E. A. Journal of Materials Chemistry C. 2017, 5, 118-126 DOI: https://doi.org/10.1039/C6TC03886G
Hu, F., Yin, C., Zhang, H., Sun, C., Yu, W.W., Zhang, C., Wang, X., Zhang, Y. and Xiao, M., Nano Letters. 2016. 16(10), 6425-6430 DOI: https://doi.org/10.1021/acs.nanolett.6b02874
Raino?, G., Nedelcu, G., Protesescu, L., Bodnarchuk, M.I., Kovalenko, M.V., Mahrt, R.F., Sto?ferle, T. ACS Nano. 2016 10(2), 2485-2490. DOI: https://doi.org/10.1021/acsnano.5b07328


Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
