The Hydrogen Evolution Reaction on Nanostructured Molybdenum Disulfide
DOI:
https://doi.org/10.29356/jmcs.v63i3.533Keywords:
layered chalcogenides, hydrogen evolution, MoS2, electrolysis, photolysisAbstract
This short review analyzes the catalytic activity of nanostructured molybdenum disulfide (MoS2). The phase transition of nanostructured MoS2 semiconductor from 2H (hexagonal) to 1T (trigonal) leads to a metal-like material through so-called surface defect engineering by chemical exfoliation. The 1T phase was found to be active for the electrocatalytic hydrogen evolution reaction (HER). Various key aspects vis-à-vis the MoS2 synthesis, characterization, support interaction, and application are, herein, highlighted.
Downloads
References
Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. ACS Catalysis 2014, 4 (11), 3957-3971. DOI: https://doi.org/10.1021/cs500923c
Li, X.; Hao, X.; Abudula, A.; Guan, G. Journal of Materials Chemistry A 2016, 4 (31), 11973-12000. DOI: https://doi.org/10.1039/C6TA02334G
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nature Reviews Materials 2017, 2 (8), 17033. DOI: https://doi.org/10.1038/natrevmats.2017.33
Yang, J.; Shin, H. S. J. Mater. Chem. A 2014, 2 (17), 5979-5985. DOI: https://doi.org/10.1039/C3TA14151A
(a) Peng, K.; Fu, L.; Yang, H.; Ouyang, J.; Tang, A. Nano Research 2016, 10 (2), 570-583; (b) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Advanced materials 2012, 24 (17), 2320-5.
Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nature nanotechnology 2016, 11 (3), 218-30. DOI: https://doi.org/10.1038/nnano.2015.340
Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. ACS Catalysis 2016, 6 (12), 8069-8097. DOI: https://doi.org/10.1021/acscatal.6b02479
Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. Nano letters 2012, 12 (7), 3695-700. DOI: https://doi.org/10.1021/nl301485q
Chia, X.; Eng, A. Y.; Ambrosi, A.; Tan, S. M.; Pumera, M. Chemical reviews 2015, 115 (21), 11941-66. DOI: https://doi.org/10.1021/acs.chemrev.5b00287
Yazyev, O. V.; Kis, A. Materials Today 2015, 18 (1), 20-30. DOI: https://doi.org/10.1016/j.mattod.2014.07.005
Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. ACS Nano 2014, 8 (11), 11394-1140. DOI: https://doi.org/10.1021/nn505501v
Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. ACS Nano 2012, 6 (6), 5635-5641. DOI: https://doi.org/10.1021/nn301572c
Ataca, C.; ?ahin, H.; Ciraci, S. The Journal of Physical Chemistry C 2012, 116 (16), 8983-8999. DOI: https://doi.org/10.1021/jp212558p
Yan, Y.; Xia, B.; Xu, Z.; Wang, X. ACS Catalysis 2014, 4 (6), 1693-1705. DOI: https://doi.org/10.1021/cs500070x
Xiang, Q.; Yu, J.; Jaroniec, M. Journal of the American Chemical Society 2012, 134 (15), 6575-8. DOI: https://doi.org/10.1021/ja302846n
Han, B.; Hu, Y. H. Energy Science & Engineering 2016, 4 (5), 285-304. DOI: https://doi.org/10.1002/ese3.128
(a) Trasatti, S. Int J Hydrogen Energy 1995, 20 (10), 835-844; (b) de Levie, R. Journal of Electroanalytical Chemistry 1999, 476, 92 – 93.
(a) Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chemical Society reviews 2009, 38 (1), 109-14; (b) Zhong, H.; Tian, R.; Gong, X.; Li, D.; Tang, P.; Alonso-Vante, N.; Feng, Y. Journal of Power Sources 2017, 361, 21-30; (c) Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanoscale 2017, 9 (34), 12231-12247.
(a) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37-38; (b) Nozik, A. J. Nature 1975, 257 (5525), 383-386.
(a) Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; Moore, T. A.; Moser, C. C.; Nocera, D. G.; Nozik, A. J.; Ort, D. R.; Parson, W. W.; Prince, R. C.; Sayre, R. T. Science 2011, 332 (6031), 805-9; (b) Nocera, D. Acc Chem Res 2012, 45 (5), 767-776; (c) Faunce, T.; Styring, S.; Wasielewski, M. R.; Brudvig, G. W.; Rutherford, A. W.; Messinger, J.; Lee, A. F.; Hill, C. L.; deGroot, H.; Fontecave, M.; MacFarlane, D. R.; Hankamer, B.; Nocera, D. G.; Tiede, D. M.; Dau, H.; Hillier, W.; Wang, L.; Amal, R. Energy & Environmental Science 2013, 6 (4), 1074.
Sheng, C.; Wei, L.; Yanfa, Y.; Thomas, H.; Ishiang, S.; Dunwei, W.; Zetian, M. Nano Futures 2017, 1 (2), 022001. DOI: https://doi.org/10.1088/2399-1984/aa88a1
Hinnemann, B.; Moses, P.; Bonde, J.; Jørgensen, K.; Nielsen, J.; Horch, S.; Chorkendorff, I.; Nørskov, J. 2005, 127, 5308-5309. DOI: https://doi.org/10.1021/ja0504690
Jaramillo, T.; Jørgensen, K.; Bonde, J.; Nielsen, J.; Horch, S.; Chorkendorff, I. Science 2007, 137, 100-102. DOI: https://doi.org/10.1126/science.1141483
(a) Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Nano letters 2016, 16 (2), 1097-103; (b) Lin, L.; Miao, N.; Wen, Y.; Zhang, S.; Ghosez, P.; Sun, Z.; Allwood, D. A. ACS Nano 2016, 10 (9), 8929-37; (c) Wu, Z.; Fang, B.; Wang, Z.; Wang, C.; Liu, Z.; Liu, F.; Wang, W.; Alfantazi, A.; Wang, D.; Wilkinson, D. P. ACS Catalysis 2013, 3 (9), 2101-2107; (d) Guo, B.; Yu, K.; Li, H.; Song, H.; Zhang, Y.; Lei, X.; Fu, H.; Tan, Y.; Zhu, Z. ACS applied materials & interfaces 2016, 8 (8), 5517-25.
Escalera-Lopez, D.; Niu, Y.; Yin, J.; Cooke, K.; Rees, N. V.; Palmer, R. E. 2016, 6 (9), 6008-6017. DOI: https://doi.org/10.1021/acscatal.6b01274
(a) Dai, X.; Du, K.; Li, Z.; Liu, M.; Ma, Y.; Sun, H.; Zhang, X.; Yang, Y. ACS applied materials & interfaces 2015, 7 (49), 27242-53; (b) Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nature materials 2016, 15 (2), 197-203.
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. 2013, 135, 10274. DOI: https://doi.org/10.1021/ja404523s
Vrubel, H.; Moehl, T.; Gratzel, M.; Hu, X. Chem Commun 2013, 49 (79), 8985-7. DOI: https://doi.org/10.1039/c3cc45416a
Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nano letters 2013, 13 (12), 6222-7. DOI: https://doi.org/10.1021/nl403661s
Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. Journal of the American Chemical Society 2011, 133 (19), 7296-9. DOI: https://doi.org/10.1021/ja201269b
Niu, F.; Dong, C.-L.; Zhu, C.; Huang, Y.-C.; Wang, M.; Maier, J.; Yu, Y.; Shen, S. Journal of Catalysis 2017, 352, 35-41. DOI: https://doi.org/10.1016/j.jcat.2017.04.027
Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 2010, 25 (1), 3-16. DOI: https://doi.org/10.1557/JMR.2010.0020
Liu, Y.; Yu, Y.-X.; Zhang, W.-D. The Journal of Physical Chemistry C 2013, 117 (25), 12949-12957. DOI: https://doi.org/10.1021/jp4009652
Qin, N.; Xiong, J.; Liang, R.; Liu, Y.; Zhang, S.; Li, Y.; Li, Z.; Wu, L. Applied Catalysis B: Environmental 2017, 202, 374-380. DOI: https://doi.org/10.1016/j.apcatb.2016.09.040
Xiang, Q.; Cheng, B.; Yu, J. Angewandte Chemie 2015, 54 (39), 11350-66. DOI: https://doi.org/10.1002/anie.201411096


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
