The Hydrogen Evolution Reaction on Nanostructured Molybdenum Disulfide

Authors

  • Nicolas Alonso-Vante Université de Poitiers 4, rue Michel Brunet - B27 BP 633 - TSA 51106 F-86022 Poitiers Cedex, France http://orcid.org/0000-0002-6311-9258
  • Carlos Augusto Campos-Roldán Instittuto Politecnico Nacional-ESIQIE Laboratorio de Electroquímica y Corrosión, UPALM, 07738, CDMX, México Université de Poitiers 4, rue Michel Brunet - B27 BP 633 - TSA 51106 F-86022 Poitiers Cedex, France

DOI:

https://doi.org/10.29356/jmcs.v63i3.533

Keywords:

layered chalcogenides, hydrogen evolution, MoS2, electrolysis, photolysis

Abstract

This short review analyzes the catalytic activity of nanostructured molybdenum disulfide (MoS2). The phase transition of nanostructured MoS2 semiconductor from 2H (hexagonal) to 1T (trigonal) leads to a metal-like material through so-called surface defect engineering by chemical exfoliation. The 1T phase was found to be active for the electrocatalytic hydrogen evolution reaction (HER). Various key aspects vis-à-vis the MoS2 synthesis, characterization, support interaction, and application are, herein, highlighted.

Downloads

Download data is not yet available.

Author Biography

Nicolas Alonso-Vante, Université de Poitiers 4, rue Michel Brunet - B27 BP 633 - TSA 51106 F-86022 Poitiers Cedex, France

IC2MP - UMR-CNRS 7285

References

Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. ACS Catalysis 2014, 4 (11), 3957-3971. DOI: https://doi.org/10.1021/cs500923c

Li, X.; Hao, X.; Abudula, A.; Guan, G. Journal of Materials Chemistry A 2016, 4 (31), 11973-12000. DOI: https://doi.org/10.1039/C6TA02334G

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nature Reviews Materials 2017, 2 (8), 17033. DOI: https://doi.org/10.1038/natrevmats.2017.33

Yang, J.; Shin, H. S. J. Mater. Chem. A 2014, 2 (17), 5979-5985. DOI: https://doi.org/10.1039/C3TA14151A

(a) Peng, K.; Fu, L.; Yang, H.; Ouyang, J.; Tang, A. Nano Research 2016, 10 (2), 570-583; (b) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Advanced materials 2012, 24 (17), 2320-5.

Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nature nanotechnology 2016, 11 (3), 218-30. DOI: https://doi.org/10.1038/nnano.2015.340

Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. ACS Catalysis 2016, 6 (12), 8069-8097. DOI: https://doi.org/10.1021/acscatal.6b02479

Lee, H. S.; Min, S. W.; Chang, Y. G.; Park, M. K.; Nam, T.; Kim, H.; Kim, J. H.; Ryu, S.; Im, S. Nano letters 2012, 12 (7), 3695-700. DOI: https://doi.org/10.1021/nl301485q

Chia, X.; Eng, A. Y.; Ambrosi, A.; Tan, S. M.; Pumera, M. Chemical reviews 2015, 115 (21), 11941-66. DOI: https://doi.org/10.1021/acs.chemrev.5b00287

Yazyev, O. V.; Kis, A. Materials Today 2015, 18 (1), 20-30. DOI: https://doi.org/10.1016/j.mattod.2014.07.005

Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. ACS Nano 2014, 8 (11), 11394-1140. DOI: https://doi.org/10.1021/nn505501v

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. ACS Nano 2012, 6 (6), 5635-5641. DOI: https://doi.org/10.1021/nn301572c

Ataca, C.; ?ahin, H.; Ciraci, S. The Journal of Physical Chemistry C 2012, 116 (16), 8983-8999. DOI: https://doi.org/10.1021/jp212558p

Yan, Y.; Xia, B.; Xu, Z.; Wang, X. ACS Catalysis 2014, 4 (6), 1693-1705. DOI: https://doi.org/10.1021/cs500070x

Xiang, Q.; Yu, J.; Jaroniec, M. Journal of the American Chemical Society 2012, 134 (15), 6575-8. DOI: https://doi.org/10.1021/ja302846n

Han, B.; Hu, Y. H. Energy Science & Engineering 2016, 4 (5), 285-304. DOI: https://doi.org/10.1002/ese3.128

(a) Trasatti, S. Int J Hydrogen Energy 1995, 20 (10), 835-844; (b) de Levie, R. Journal of Electroanalytical Chemistry 1999, 476, 92 – 93.

(a) Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chemical Society reviews 2009, 38 (1), 109-14; (b) Zhong, H.; Tian, R.; Gong, X.; Li, D.; Tang, P.; Alonso-Vante, N.; Feng, Y. Journal of Power Sources 2017, 361, 21-30; (c) Chaudhari, N. K.; Jin, H.; Kim, B.; Lee, K. Nanoscale 2017, 9 (34), 12231-12247.

(a) Fujishima, A.; Honda, K. Nature 1972, 238 (5358), 37-38; (b) Nozik, A. J. Nature 1975, 257 (5525), 383-386.

(a) Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A.; Moore, T. A.; Moser, C. C.; Nocera, D. G.; Nozik, A. J.; Ort, D. R.; Parson, W. W.; Prince, R. C.; Sayre, R. T. Science 2011, 332 (6031), 805-9; (b) Nocera, D. Acc Chem Res 2012, 45 (5), 767-776; (c) Faunce, T.; Styring, S.; Wasielewski, M. R.; Brudvig, G. W.; Rutherford, A. W.; Messinger, J.; Lee, A. F.; Hill, C. L.; deGroot, H.; Fontecave, M.; MacFarlane, D. R.; Hankamer, B.; Nocera, D. G.; Tiede, D. M.; Dau, H.; Hillier, W.; Wang, L.; Amal, R. Energy & Environmental Science 2013, 6 (4), 1074.

Sheng, C.; Wei, L.; Yanfa, Y.; Thomas, H.; Ishiang, S.; Dunwei, W.; Zetian, M. Nano Futures 2017, 1 (2), 022001. DOI: https://doi.org/10.1088/2399-1984/aa88a1

Hinnemann, B.; Moses, P.; Bonde, J.; Jørgensen, K.; Nielsen, J.; Horch, S.; Chorkendorff, I.; Nørskov, J. 2005, 127, 5308-5309. DOI: https://doi.org/10.1021/ja0504690

Jaramillo, T.; Jørgensen, K.; Bonde, J.; Nielsen, J.; Horch, S.; Chorkendorff, I. Science 2007, 137, 100-102. DOI: https://doi.org/10.1126/science.1141483

(a) Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Nano letters 2016, 16 (2), 1097-103; (b) Lin, L.; Miao, N.; Wen, Y.; Zhang, S.; Ghosez, P.; Sun, Z.; Allwood, D. A. ACS Nano 2016, 10 (9), 8929-37; (c) Wu, Z.; Fang, B.; Wang, Z.; Wang, C.; Liu, Z.; Liu, F.; Wang, W.; Alfantazi, A.; Wang, D.; Wilkinson, D. P. ACS Catalysis 2013, 3 (9), 2101-2107; (d) Guo, B.; Yu, K.; Li, H.; Song, H.; Zhang, Y.; Lei, X.; Fu, H.; Tan, Y.; Zhu, Z. ACS applied materials & interfaces 2016, 8 (8), 5517-25.

Escalera-Lopez, D.; Niu, Y.; Yin, J.; Cooke, K.; Rees, N. V.; Palmer, R. E. 2016, 6 (9), 6008-6017. DOI: https://doi.org/10.1021/acscatal.6b01274

(a) Dai, X.; Du, K.; Li, Z.; Liu, M.; Ma, Y.; Sun, H.; Zhang, X.; Yang, Y. ACS applied materials & interfaces 2015, 7 (49), 27242-53; (b) Staszak-Jirkovsky, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G.; Markovic, N. M. Nature materials 2016, 15 (2), 197-203.

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. 2013, 135, 10274. DOI: https://doi.org/10.1021/ja404523s

Vrubel, H.; Moehl, T.; Gratzel, M.; Hu, X. Chem Commun 2013, 49 (79), 8985-7. DOI: https://doi.org/10.1039/c3cc45416a

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Nano letters 2013, 13 (12), 6222-7. DOI: https://doi.org/10.1021/nl403661s

Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. Journal of the American Chemical Society 2011, 133 (19), 7296-9. DOI: https://doi.org/10.1021/ja201269b

Niu, F.; Dong, C.-L.; Zhu, C.; Huang, Y.-C.; Wang, M.; Maier, J.; Yu, Y.; Shen, S. Journal of Catalysis 2017, 352, 35-41. DOI: https://doi.org/10.1016/j.jcat.2017.04.027

Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 2010, 25 (1), 3-16. DOI: https://doi.org/10.1557/JMR.2010.0020

Liu, Y.; Yu, Y.-X.; Zhang, W.-D. The Journal of Physical Chemistry C 2013, 117 (25), 12949-12957. DOI: https://doi.org/10.1021/jp4009652

Qin, N.; Xiong, J.; Liang, R.; Liu, Y.; Zhang, S.; Li, Y.; Li, Z.; Wu, L. Applied Catalysis B: Environmental 2017, 202, 374-380. DOI: https://doi.org/10.1016/j.apcatb.2016.09.040

Xiang, Q.; Cheng, B.; Yu, J. Angewandte Chemie 2015, 54 (39), 11350-66. DOI: https://doi.org/10.1002/anie.201411096

×

Published

2019-10-17
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...