Structure - Function Analysis of the Cytochromes P450, Responsible for Phenprocoumon Metabolism

Authors

  • Israel Quiroga Benemérita Universidad Autónoma de Puebla
  • Thomas Scior Benemérita Universidad Autónoma de Puebla

DOI:

https://doi.org/10.29356/jmcs.v61i4.466

Keywords:

CYP450, CYP2C9, Structure-Function Relationship, Molecular Mechanics, Phenprocoumon, Docking, regioselectivity

Abstract

Phenprocoumon is an oral anticoagulant used for the prophylaxis and treatment of disorders due to thrombosis. However, if oral anticoagulants are not metabolized, they could exacerbate and generate clotting disorders. Phenprocoumon is metabolized by at least four hepatic enzymes members of the cytochromes P450 family; three of which are members of the same subfamily (CYP2C9, CYP2C19 and CYP2C8). Even with too many differences in their amino acid sequence and tertiary structures, CYP2C9 and CYP3A4 have the most similar metabolic activity on phenprocoumon. In this study, we were able to explain these activity similarities using force fields of molecular mechanics for geometry and energy optimization in combination with docking techniques. The results were compared to study Structure-Function Relationships (SFR) of our four target proteins (CYP2C9, CYP2C19, CYP2C8 and CYP3A4). The study and prediction of metabolism and sites of metabolisms of drugs was successfully performed using this approach.

Downloads

Download data is not yet available.

Author Biographies

Israel Quiroga, Benemérita Universidad Autónoma de Puebla

Factulty of Chemical Sciences

Thomas Scior, Benemérita Universidad Autónoma de Puebla

Factulty of Chemical Sciences

References

Gonzalez, F. J.; Tukey, R. H., in: The Pharmacological Basis of Therapeutics, 11 Ed., McGraw-Hill, New York, 2006, 71-91.

Wöll, S.; Kim, S. H.; Greten, H. J.; Efferth, T. Nat Prod Bioprospect, 2013, 1-7.

Brodie, E. D.; Ridenhour, B. J.; Brodie, E. D. Evolution, 2002, 56, 2067-2082. DOI: https://doi.org/10.1111/j.0014-3820.2002.tb00132.x

Handschin, C.; Meyer, U. A. Pharmacol. Rev, 2003, 55, 649-673. DOI: https://doi.org/10.1124/pr.55.4.2

Bello, M.; Mendieta-Wejebe, J. E.; Correa-Basurto, J. Biochem Pharmacol, 2014, 90, 145-158. DOI: https://doi.org/10.1016/j.bcp.2014.04.016

Mendieta-Wejebe, E. J.; Correa-Basurto, J.; Garcia-Segovia, E. M.; Ceballos-Cancino, G.; Rosales-Hernandez, M. C. Curr Drug Metab, 2011, 12, 533-548. DOI: https://doi.org/10.2174/138920011795713670

Mendieta-Wejebe, J. E.; Rosales-Hernández, M. C.; Rios, H.; Trujillo-Ferrara, J.; López-Pérez, G.; Tamay-Cach, F.; Ramos-Morales, R.; Correa-Basurto, J. J Mol Model, 2008, 14, 537-545. DOI: https://doi.org/10.1007/s00894-008-0294-z

Rosales-Hernández, M. C.; Mendieta-Wejebe, J. E.; Trujillo-Ferrara, J. G.; Correa-Basurto, V. Eur. J. Med. Chem, 2010, 45, 4845-4855. DOI: https://doi.org/10.1016/j.ejmech.2010.07.055

Vedani, A.; Smiesko, M. Altern Lab Anim, 2009, 37, 477-496. DOI: https://doi.org/10.1177/026119290903700506

Vedani, A.; Dobler M.; Smieško, M. Toxicol Appl Pharmacol, 2012, 261, 142-153. DOI: https://doi.org/10.1016/j.taap.2012.03.018

Zaretzki, J.; Bergeron, C.; Rydberg, P.; Huang, T. W.; Bennett, K. P.; Breneman, C. M. J. Chem. Inf. Model, 2011, 51, 1667-1689. DOI: https://doi.org/10.1021/ci2000488

Martínez-Sotres C.; Rutiaga-Quiñones J. G.; Herrera-Bucio, R.; Gallo, M.; López-Albarrán, P. Wood Sci. Technol, 2015, 49, 857-868. DOI: https://doi.org/10.1007/s00226-015-0734-8

Wester, M. R.; Johnson, E. F.; Marques-Soares, C.; Dijols, S.; Dansette, P. M.; Mansuy, D.; Stout, C. D. Biochemistry, 2003, 42, 9335-9345. DOI: https://doi.org/10.1021/bi034556l

Scott, E. E.; White, M. A.; He, Y. A.; Johnson, E. F.; Stout, C. D.; Halpert, J. R. J. Biol. Chem, 2004, 279, 27294-27301. DOI: https://doi.org/10.1074/jbc.M403349200

Van Booven, D.; Marsh, S.; McLeod, H.; Carrillo, M. W.; Sangkuhl, K.; Klein, T. E.; Altman, R. B. Pharmacogenet Genomics, 2010, 20, 277. DOI: https://doi.org/10.1097/FPC.0b013e3283349e84

Pirmohamed, M.; Park, B. K. Toxicology, 2003, 192, 23-32. DOI: https://doi.org/10.1016/S0300-483X(03)00247-6

Lee, C. R.; Goldstein, J. A.; Pieper, J. A. Pharmacogenet Genomics, 2002, 12, 251-263. DOI: https://doi.org/10.1097/00008571-200204000-00010

Ufer, M.; Kammerer, B.; Kahlich, R.; Kirchheiner, J.; Yasar, Ü.; Brockmöller, J.; Rane, A. Xenobiotica, 2004, 34, 847-859. DOI: https://doi.org/10.1080/00498250400009197

Hirsh, J; Dalen, J. E.; Anderson, D. R.; Poller, L.; Bussey, H.; Ansell, J.; Deykin, D. Chest, 2001, 119, 8S-21S. DOI: https://doi.org/10.1378/chest.119.1_suppl.8S

He, M.; Korzekwa, K. R.; Jones, J. P.; Rettie, A. E.; Trager, W. F. Arch. Biochem. Biophys, 1999, 372, 16-28. DOI: https://doi.org/10.1006/abbi.1999.1468

Remko, M.; Broer, R.; Remková, A. RSC Adv., 2014, 4, 8072-8084. DOI: https://doi.org/10.1039/C3RA42347F

van Leeuwen, Y. in Towards Improvement, Ed. Gildeprint, 2009.

Ufer, M.; Svensson, J. O.; Krausz, K. W.; Gelboin, H. V.; Rane, A.; Tybring, G. Eur. J. Clin. Pharmacol, 2004, 60, 173-182. DOI: https://doi.org/10.1007/s00228-004-0740-5

Kammerer, B.; Kahlich, R.; Ufer, M.; Schenkel, A.; Laufer, S.; Gleiter, C. H. Anal Bioanal Chem, 2005, 383, 909-917. DOI: https://doi.org/10.1007/s00216-005-0113-7

Kirchheiner, J.; Ufer, M.; Walter, E. C.; Kammerer, B.; Kahlich, R.; Meisel, C.; Schwab, M.; Gleiter, C. H.; Rane, A.; Roots, I.; Brockmöller, J. Pharmacogenet Genomics, 2004, 14, 19-26. DOI: https://doi.org/10.1097/00008571-200401000-00002

Kirchmair, J.; Williamson, M. J.; Tyzack, J. D.; Tan, L.; Bond, P. J.; Bender, A.; Glen, R. C. J. Chem. Inf. Model, 2012, 52, 617-648. DOI: https://doi.org/10.1021/ci200542m

Nabuurs, S. B.; Wagener, M.; De Vlieg, J. J Med Chem, 2007, 50, 6507-6518. DOI: https://doi.org/10.1021/jm070593p

Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I.N.; Bourne, P. E. Nucleic Acids Res, 2000, 28, 235-242. DOI: https://doi.org/10.1093/nar/28.1.235

Poulos, T. L.; Finzel, B. C.; Howard, A. J. J Mol Bio, 1987, 195, 87-700. DOI: https://doi.org/10.1016/0022-2836(87)90190-2

Raag, R.; Poulos, T. L. Biochemistry, 1989, 28, 7586-7592. DOI: https://doi.org/10.1021/bi00445a013

Wester, M. R.; Yano, J. K.; Schoch, G. A.; Yang, C.; Griffin, K. J.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2004, 279, 35630-35637. DOI: https://doi.org/10.1074/jbc.M405427200

Yano, J. K.; Wester, M. R.; Schoch, G. A.; Griffin, K. J.; Stout, C. D.; Johnson, E. F., J Biol Chem, 2004, 279, 38091-38094. DOI: https://doi.org/10.1074/jbc.C400293200

Reynald, R. L.; Sansen, S.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2012, 287, 44581-44591. DOI: https://doi.org/10.1074/jbc.M112.424895

Schoch, G. A.; Yano, J. K.; Sansen, S.; Dansette, P. M.; Stout, C. D.; Johnson, E. F., J Biol Chem, 2008, 285, 17227-17237. DOI: https://doi.org/10.1074/jbc.M802180200

Pedretti, A.; Villa, L.; Vistoli, G. J Mol Graph Model, 2002, 21, 47-49. DOI: https://doi.org/10.1016/S1093-3263(02)00123-7

Williams, P. A.; Cosme, J.; Ward, A.; Angove, H. C.; Vinkovi?, D. M.; Jhoti, H. Nature, 2003, 424, 464-468. DOI: https://doi.org/10.1038/nature01862

Gasteiger, J.; Marsili, M. Tetrahedron, 1980, 36, 3219-3228. DOI: https://doi.org/10.1016/0040-4020(80)80168-2

Hall, T. A. Nucleic Acids Symp Ser, 1999, 41, 95-98.

Humphrey, W.; Dalke, A.; Schulten, K. J Mol Graph M, 1996,

, 33-38.

Studio, D. , version 4.0, San Diego: Accelrys. Inc, 2009.

Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem, 2009, 30, 2785-2791. DOI: https://doi.org/10.1002/jcc.21256

Vedani, A.; Huhta, D. W. J. Am. Chem. Soc, 1990, 112, 4759-4767. DOI: https://doi.org/10.1021/ja00168a021

Sirim, D.; Widmann, M.; Wagner, F.; Pleiss, J. BMC Struct. Biol, 2010, 10, 34-46. DOI: https://doi.org/10.1186/1472-6807-10-34

Schoch, G. A.; Yano, J. K.; Wester, M. R.; Griffin, K. J.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2004, 279, 9497-9503. DOI: https://doi.org/10.1074/jbc.M312516200

Whitford, D. Proteins: structure and function, Sussex: John Wiley & Sons, 2013.

Kaminsky, L. S.; Zhang, Z. Y. Pharmacol. Ther, 1997, 73, 67-74. DOI: https://doi.org/10.1016/S0163-7258(96)00140-4

Ufer, M. Clin Pharmacokinet, 2005, 44, 1227-1246. DOI: https://doi.org/10.2165/00003088-200544120-00003

Ortiz de Montellano P. R. Chem Rev, 2010 110, 932-948. DOI: https://doi.org/10.1021/cr9002193

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Loading...