Luminescence Based Detection of Trinitrophenol and Aromatic Organophosphorous Pesticides Using a Coordination Polymer

Authors

  • Rupinder Kaur Thapar University
  • Manmohan Chhibber Thapar University
  • Partha Mahata Jadavpur University
  • Susheel K. Mittal Thapar University

DOI:

https://doi.org/10.29356/jmcs.v61i4.464

Keywords:

nitro-explosives, TNT, acetylcholinesterases, acetylcholine, molecular sensing, MOF

Abstract

The fluorescent properties of a coordination polymer (CP), 1, were used as turn-on and turn-off detector for nitroaromatics and organophosporus pesticides respectively. Compound 1 exhibits exceptionally high efficiency for the detection of 2,4,6-trinitrophenol (TNP) through luminescence quenching with a quenching constant [KSV] value of 2.30 X 105 M-1, highest among the known coordination polymers. Minimum detection limit achieved by the proposed method was 43 ppb. This emission property of 1 was also used successfully to detect triazophos and chlorpyrifos, aromatic organophosphorus pesticides, which enhanced the emission intensity by 238% and a red shift of ~70 nm in case of former. Non aromatic pesticides like malathion and acephate did not show any increase in the emission intensity. Minimum detection limits for triazophos and chlorpyrifos, aromatic organophosphorus pesticides, were 0.6 and 0.7 ppm respectively.

Downloads

Download data is not yet available.

Author Biographies

Rupinder Kaur, Thapar University

School of Chemistry & Biochemistry

Manmohan Chhibber, Thapar University

School of Chemistry & Biochemistry

Partha Mahata, Jadavpur University

Department of Chemistry

Susheel K. Mittal, Thapar University

School of Chemistry & Biochemistry

References

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450-1459. DOI: https://doi.org/10.1039/b807080f

Collins, D. J.; Zhou, H. C. J. Mater. Chem. 2007, 17, 3154-3160. DOI: https://doi.org/10.1039/b702858j

Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255, 1791-1823. DOI: https://doi.org/10.1016/j.ccr.2011.02.012

Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008, 130, 6774-6780. DOI: https://doi.org/10.1021/ja710973k

An, J. Y.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376-8377. DOI: https://doi.org/10.1021/ja902972w

Reineke, T. M.; Eddaoudi, M.; Fehr, M.; Kelley, D.; Yaghi, O. M. J. Am. Chem. Soc. 1999, 121, 1651-1657. DOI: https://doi.org/10.1021/ja983577d

Zhang, Z.; Xiang, S.; Rao, X.; Zheng, Q.; Fronczek, F. R.; Qian, G.; Chen, B. Chem. Commun. 2010, 46, 7205-7207. DOI: https://doi.org/10.1039/c0cc01236j

Harbuzaru, B. V.; Corma, A.; Rey, F.; Jorda, J. L.; Ananias, D.; Carlos L. D.; Rocha, J. Angew. Chem. Int. Ed. 2009, 48, 6476-6479. DOI: https://doi.org/10.1002/anie.200902045

White, K. A.; Chengelis, D. A.; Gogick, K. A.; Stehman, J.; Rosi, N. L.; Petoud, S. J. Am. Chem. Soc. 2009, 131, 18069-18071. DOI: https://doi.org/10.1021/ja907885m

Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Duyne, R. P. V.; Hupp, J. T. Chem. Rev., 2012, 112, 1105-1125. DOI: https://doi.org/10.1021/cr200324t

Ma, L.; Evans, O. R.; Foxman, B. M.; Lin, W. Inorg. Chem. 1999, 38, 5837-5840. DOI: https://doi.org/10.1021/ic990429v

Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D. J. Am. Chem. Soc. 2007, 129, 7136-7144. DOI: https://doi.org/10.1021/ja0700395

Zhang, L.-Z.; Gu, W.; Li, B.; Liu, X.; Liao, D. Z. Inorg. Chem. 2007, 46, 622-624. DOI: https://doi.org/10.1021/ic061635n

Fang, Q.; Zhu, G.; Xue, M.; Sun, J.; Sun, F.; Qiu, S. Inorg. Chem. 2006, 45, 3582-3587. DOI: https://doi.org/10.1021/ic051810k

Chelebaeva, E.; Larionova, J.; Guari, Y.; Sá Ferreira, R. A.; Carlos, L. D.; Almeida Paz, F. A.; Trifonov, A.; Guérin, C. Inorg. Chem. 2008, 47, 775-777. DOI: https://doi.org/10.1021/ic702192k

Wang, G. H.; Li, Z. G.; Jia, H. Q.; Hu, N. H.; Xu, J. W. Cryst. Eng. Comm. 2009, 11, 292-297. DOI: https://doi.org/10.1039/B809557D

He, G.; Peng, H.; Liu, T.; Wang, M.; Zhang, Y.; Fang, Y. J. Mater. Chem. 2009, 19, 7347-7353. DOI: https://doi.org/10.1039/b906946a

Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339-1386. DOI: https://doi.org/10.1021/cr0501339

Nagarkar, S. S.; Desai, A. V.; Ghosh, S. K. Chem. Commun. 2014, 50, 8915-8918. DOI: https://doi.org/10.1039/C4CC03053B

Singha, D. K.; Majee, P.; Mondal, S. K.; Mahata, P. Eur. J. Inorg. Chem. 2015, 2015, 1390-1397. DOI: https://doi.org/10.1002/ejic.201403097

Roy, B.; Bar, A. K.; Gole, B.; Mukherjee, P. S. J. Org. Chem. 2013, 78, 1306-1310. DOI: https://doi.org/10.1021/jo302585a

Gallo, M. A.; Lawryk, N. J., in: Handbook of Pesticide Toxicology, Vol. 2, Hayes, W. J., Laws, E. R., Ed., Academic Press, San Diego, 1991, 917-1123.

Furton, K. G.; Myers, L. J. Talanta 2001, 54, 487-500. DOI: https://doi.org/10.1016/S0039-9140(00)00546-4

Eiceman, G. A.; Stone, J. A. Anal. Chem. 2004, 76, 390-397. DOI: https://doi.org/10.1021/ac041665c

Luggar, R. D.; Farquharson, M. J.; Horrocks, J. A.; Lacey, R. J. X-Ray Spectrom. 1998, 27, 87-94. DOI: https://doi.org/10.1002/(SICI)1097-4539(199803/04)27:2<87::AID-XRS256>3.0.CO;2-0

Hakansson, K.; Coorey, R. V.; Zubarev, R. A.; Talrose, V. L.; Hakansson, P. J. Mass Spectrom. 2000, 35, 337-346. DOI: https://doi.org/10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7

Sylvia, J. M.; Janni, J. A.; Klein, J. D.; Spencer, K. M. Anal. Chem. 2000, 72, 5834-5840. DOI: https://doi.org/10.1021/ac0006573

Kandpal, M.; Bandela, A. K.; Hinge, V. K.; Rao, V. R.; Rao, C. P. ACS Appl. Mater. Interfaces 2013, 5, 13448-13456. DOI: https://doi.org/10.1021/am404356v

Moros, J.; Laserna, J. J. Anal. Chem. 2011, 83, 6275-6285. DOI: https://doi.org/10.1021/ac2009433

Hallowell, S. F. Talanta 2001, 54, 447-458. DOI: https://doi.org/10.1016/S0039-9140(00)00543-9

Stan, H. J. J. Chromatogr. 2000, 892, 347-377. DOI: https://doi.org/10.1016/S0021-9673(00)00308-3

Chen, P. S.; Huang, S. D. Talanta 2006, 69, 669-675. DOI: https://doi.org/10.1016/j.talanta.2005.10.042

Leandro, C. C.; Hancock, P.; Fussell, R. J.; Keely, B. J. J. Chromatorgr. A 2006, 1103, 94-101. DOI: https://doi.org/10.1016/j.chroma.2005.10.077

Zhang, G. L. J. Anhui Agric. Sci. 2003, 31, 663-673. DOI: https://doi.org/10.1046/j.1365-313X.2002.01380.x

Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R. Agri. Sci. Res. J. 2012, 2, 512-522.

Horike, S.; Umeyama, D.; Kitagawa, S. Acc. Chem. Res. 2013, 46, 2376-2384. DOI: https://doi.org/10.1021/ar300291s

Kumar, P.; Paul, A. K.; Deep, A. Micropor. & Mesopor. Mat. 2014, 195, 60-66. DOI: https://doi.org/10.1016/j.micromeso.2014.04.017

Kumar, P.; Paul, A. K.; Deep, A. Anal. Methods 2014, 6, 4095-4101. DOI: https://doi.org/10.1039/C3AY42189A

Mahata, P.; Drazneiks, C. M.; Roy, P.; Natarajan, S. Cryst. Growth Des. 2013, 13, 155-168. DOI: https://doi.org/10.1021/cg301306m

Mahata, P.; Natarajan, S.; Panissod, P.; Drillon, M. J. Am. Chem. Soc. 2009, 131, 10140-10150. DOI: https://doi.org/10.1021/ja9017539

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...