Excellent Catalytic Performance of Co₃O₄/CuO Nanocomposite for Catalytic Reduction of Nitroaromatic Compounds and Dyes Pollutants
DOI:
https://doi.org/10.29356/jmcs.v69i4.2340Keywords:
4-Nitroaniline, Co3O4/CuO, safranin O, methyl orange, catalytic reductionAbstract
Abstract. The paper investigates the catalytic reduction of nitroaromatic compounds (4-nitroaniline (4-NA) and 2-nitroaniline (2-NA)) by Co3O4/CuO nanocomposite. Also, the degradative property of nanocomposite was assessed using both anionic (methyl orange (MO)) and cationic (safranin O (SO)) dyes pollutants and simulated by the linear isotherm models and kinetic equations. Nano metal oxides CuO and Co3O4, as well as its nanocomposite, were synthesized using a precipitation-calcination method. The crystalline pattern, morphological structure, functionality, surface chemistry, and elemental content were evaluated. The catalytic efficiency in the reduction of nitroanilines and dyes was evaluated by sodium borohydride (NaBH4). 100 % conversion of nitroanilines to their corresponding amines could be achieved in just 2 minutes for 4-nitroaniline and 10 minutes for 2-nitroaniline. The Co3O4/CuO nanocomposite shows 100 % and 76.6 % TOC for degradation of MO and SO. Additionally, the nanocomposite demonstrated stable performance over five consecutive reduction cycles for both dyes and NAs. Overall, the synthesized Co3O4/CuO nanocatalyst proves to be a cost-effective and high-performing candidate for remediation of pollutants in wastewater. Its easy recovery nature and efficient catalytic performance make it an excellent choice for environmental cleanup efforts.
Downloads
References
1. Lai, C.; Li, B.; Chen, M.; Zeng, G.; Huang, D.; Qin, L.; Liu, X.; Cheng, M.; Wan, J.; Du, C.; Huang, F.; Liu, S.; Yi, H. Int. J. Hydrogen Energy. 2018, 43, 1749-1757. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.025
2. Bakhsh, E.M.; Ali, F.; Khan, S.B.; Marwani, H.M.; Danish, E.Y.; Asiri, A.M. Int. J. Biol. Macromol. 2019, 131, 666-675. DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.095
3. Ameen, F.; Dawoud, T.M.; Alshehrei, F.; Alsamhary, K.; Almansob, A. Chemosphere. 2021, 271, 129532. DOI: https://doi.org/10.1016/j.chemosphere.2021.129532
4. de Barros, M.R.; Winiarski, J.P.; Elias, W.C.; de Campos, C.E.M.; Jost, C.L. J. Environ. Chem. Eng. 2021, 9, 105821. DOI: https://doi.org/10.1016/j.jece.2021.105821
5. Josephy, P.D.; Dhanoa, J.; Elzawy, G.; Heney, K.; Petrie, L.; Senis, C. Environ. Mol. Mutagen.2018, 59, 114-122. DOI: https://doi.org/10.1002/em.22161
6. Melinte, V.; Stroea, L.; Buruiana, T.; Chibac, A.L. Eur. Polym. J. 2019, 121, 109289. DOI: https://doi.org/10.1016/j.eurpolymj.2019.109289
7. Mei, X.; Ding, Y.; Wang, Y.; Yang, Y.; Xu, L.; Wang, Y.; Shen, W.; Zhang, Z.; Ma, M.; Guo, Z.; Xiao, Y.; Yang, X.; Zhou, B.; Xu, K.; Guo, W.; Wang, C. Bioresour. Technol. 2020, 307, 123241. DOI: https://doi.org/10.1016/j.biortech.2020.123241
8. Malakootian, M.; Gharaghani, M.A.; Dehdarirad, A.; Khatami, M.; Ahmadian, M.; Heidari, M.R.; Mahdizadeh, H. J. Mol. Struct. 2019, 1176, 766-776. DOI: https://doi.org/10.1016/j.molstruc.2018.09.033
9. Amani, A.; Derikvand, Z.; Ghadermazi, M. Inorg. Nano-Metal Chem. 2025, 55, 864–879. DOI: https://doi.org/10.1080/24701556.2024.2355507
10. Pereira, I.D.S.; Bamberg, A.L.; Oliveira de Sousa, R.; Monteiro, A.B.; Martinazzo, R.; Posser Silveira, C.A.; de Oliveira Silveira, A. J. Environ. Manag. 2020, 275, 111203. DOI: https://doi.org/10.1016/j.jenvman.2020.111203
11. Smith, S.R. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 4005-4041. DOI: https://doi.org/10.1098/rsta.2009.0154
12. Gu, Y.; Wang, Y.;; Zhang, H. Spectrochim. Acta, Part A. 2018, 202, 260-268. DOI: https://doi.org/10.1016/j.saa.2018.05.008
13. Mazari, S.A.; Ali E.; Abro, R.; Khan, F.S.A.; Ahmed, I.; Ahmed, M.; Nizamuddin, S.; Siddiqui, T.H.; Hossain, N.; Mubarak, N.M.; Shah, A. J. Environ. Chem. Eng, 2021, 9, 105028. DOI: https://doi.org/10.1016/j.jece.2021.105028
14. (a) Gerent, G.G.; Santana, E.R.; Martins, E.C.; Spinelli, A. Food Chem. 2021, 343, 128419; (b) Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Amraei S. Mater. Sci. Engin.: C. 2015, 48, 270-278; (c) Rahimi Fard, M.; Pourghobadi, Z. Anal. Bioanal. Chem. Res. 2018, 5, 249-259; (d) Saki, A.: Pourghobadi, Z.; Derikvand Z. J. Electrochem Soc. 2022, 169, 116507; (e) Alvandi, H.; Dorosti, N.; Afshar; F. Mater. Tech. 2022, 37, 1691-1702.
15. (a) Santana, E.R.; de Lima, C.A.; Piovesan, J.V.; Spinelli, A. Sens. Actuators B Chem. 2017, 240, 487-496; (b) Beiranvand, S.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. J. Electroanal. Chem. 2016, 776, 170-179; (c) Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Karimi Z. Nano-Micro Lett. 2015, l.7, 152-164; (d) Dorosti, N.; Delfan, B.; Khodadadi, M. Appl. Organomet. Chem. 2017, 31, e3875.
16. Maiyalagan,T.; Wang, X.; Manthiram, A. RSC Adv. 2014, 4, 4028-4033. DOI: https://doi.org/10.1039/C3RA45262J
17. Hosseinkhani, B.; Søbjer, L.S. g.; Rotaru, A.E.; Emtiazi, G., krydstrup, T. S,; Meyer, R.L. Biotechnol. Bioeng., 2012, 109, 45-52. DOI: https://doi.org/10.1002/bit.23293
18. Ai, L.; Li, L. Chem. Eng. J., 2013, 223, 688-695. DOI: https://doi.org/10.1016/j.cej.2013.03.015
19. Zhang, H.; Jiang, M.; Zhang, D.; Xia, Q. Chem. Eng. Commun. 2009, 197, 377-386. DOI: https://doi.org/10.1080/00986440903089031
20. Jiang, P.; Zhou, J.; Zhang, A.; Zhong, Y. J. Environ. Sci. 2010, 22, 500-506. DOI: https://doi.org/10.1016/S1001-0742(09)60140-6
21. Kumar Dutta, R.; Verma S. J. Environ. Chem.Eng. 2017, 5, 4776-4787. DOI: https://doi.org/10.1016/j.jece.2017.08.026
22. Liu, Z.; Yang, C.; Qiao, C. FEMS Microbiol. Lett., 2007, 277, 150-156. DOI: https://doi.org/10.1111/j.1574-6968.2007.00940.x
23. Modirshahla, N.; Behnajady, M.; Mohammadi-Aghdam S. J. Hazard. Mater. 2008, 154, 778-786. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.120
24. Elfiad, A.; Galli, F.; Boukhobza, L.M.; Djadoun, A.; Boffito D.C. J. Environ. Chem. Eng. 2020, 8, 104214. DOI: https://doi.org/10.1016/j.jece.2020.104214
25. Ghosh, B.K.; Ghosh, N.N. J. Nanosci. Nanotechnol. 2018, 18, 3735-3758. DOI: https://doi.org/10.1166/jnn.2018.15345
26. Wang, C.; Zhang, H.; Feng, Gao.; Shang, C. S.; Wang N. Z. Catal. Commun. 2015, 72, 29-32. DOI: https://doi.org/10.1016/j.catcom.2015.09.004
27. Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee W. Chem. Eng. J., 2020, 384, 123252. DOI: https://doi.org/10.1016/j.cej.2019.123252
28. Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y. J. Phys. Chem. C. 2010, 114, 8814-8820. DOI: https://doi.org/10.1021/jp101125j
29. Derikvand, Z.; Rahmati, F.; Azadbakht, A. Appl. Organomet. Chem. 2019, 33, e4864. DOI: https://doi.org/10.1002/aoc.4864
30. Derikvand, Z.; Azadbakht, A.; Amiri Rudbari H. J. Inorg. Organomet. Poly. Mater. 2019, 29, 502-516. DOI: https://doi.org/10.1007/s10904-018-1022-5
31. Bahrami, M.; Derikvand, Z. J. Mol. Struct., 2022, 1254, 132367. DOI: https://doi.org/10.1016/j.molstruc.2022.132367
32. Lellis, B.; F´avaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Biotechnol. Res. Innov., 2019, 3, 275–290. DOI: https://doi.org/10.1016/j.biori.2019.09.001
33. Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A. G.; Gupta, V.K. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. DOI: https://doi.org/10.1016/j.ecoenv.2017.11.034
34. Alsukaibi, A.K.D. Processes 2022, 10, 1968. DOI: https://doi.org/10.3390/pr10101968
35. Javaid, R.; Qazi, U.Y. Int. J. Environ. Res. Public Health. 2019, 16, 2066. DOI: https://doi.org/10.3390/ijerph16112066
36. Hosseini, S. A. Iran. J. Chem. Engin. 2017, 14, 83-90.
37. Kumar, R.; Kumar, K.; Thakur, N. Hybrid Advances, 2024, 5, 100129. DOI: https://doi.org/10.1016/j.hybadv.2023.100129
38. Ma, J.; Deng , H.; Zhang , Z.; Zhang , L.; Qin, Z.; Zhang, Y.; Gao, L.; Jiao, T. Colloids Surf. A: Physicochem. Eng. Asp, 2022, 632, 127774. DOI: https://doi.org/10.1016/j.colsurfa.2021.127774
39. Yin, J. J.; Ge, B. C.; Jiao, T. F.; Qin, Z. H.; Yu, M. Q.; Zhang, L. X.; Zhang, Q. R.; Peng Q. M. Langmuir, 2021, 37, 1267-1278. DOI: https://doi.org/10.1021/acs.langmuir.0c03297
40. Jeon, S.; Ko, J.W.; Bae, K.W. Elastom. Compos., 2020, 55, 191-198.
41. Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. J. Mater. Chem. 2007, 17, 2145-2150. DOI: https://doi.org/10.1039/b615903f
42. Zarbakhsh, E.; Derikvand, Z. Appl. Organomet. Chem. 2024, 38, e7674. DOI: https://doi.org/10.1002/aoc.7674
43. Rattanakit, P.; Chutimasakul, T.; Darakai, V.; Nurerk, P.; Putnin, T. S. Afr. J. Chem. Eng. 2024, 47, 270–278. DOI: https://doi.org/10.1016/j.sajce.2023.12.004
44. Su, Z.; Wu, B.; Chen, L.; Tadesse Mosisa, M.; Zhang, P.; Wu, Q.; Kuo, D.-H.; Lu, D.; Ahmed Zelekew, O.; Lin, J.; Chen, X. J. Sci.: Adv. Mater. Devices 2023, 8, 100645. DOI: https://doi.org/10.1016/j.jsamd.2023.100645
45. Derikvand, Z.; Akbari, S.; Kouchakzadeh, G.; Azadbakht, A.; Nemati, A. Russ. J. Phys. Chem. A. 2019, 93, 2604-2612. DOI: https://doi.org/10.1134/S0036024419130089
46. Arul, V.; M.G. Sethuraman, Opt. Mater. 2018, 78, 181-190. DOI: https://doi.org/10.1016/j.optmat.2018.02.029
47. Mallick, K.; Witcomb, M. Scurrell, M. Mate. Chem. Phys. 2006, 97, 283-287. DOI: https://doi.org/10.1016/j.matchemphys.2005.08.011


Downloads
Published
Issue
Section
License
Copyright (c) 2025 Amir Hossein Sepahvand, Zohreh Derikvand, Saeid Menati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
