Excellent Catalytic Performance of Co₃O₄/CuO Nanocomposite for Catalytic Reduction of Nitroaromatic Compounds and Dyes Pollutants

Authors

  • Amir Hossein Sepahvand Islamic Azad University
  • Zohreh Derikvand Islamic Azad University https://orcid.org/0000-0002-2202-0630
  • Saeid Menati Islamic Azad University

DOI:

https://doi.org/10.29356/jmcs.v69i4.2340

Keywords:

4-Nitroaniline, Co3O4/CuO, safranin O, methyl orange, catalytic reduction

Abstract

Abstract. The paper investigates the catalytic reduction of nitroaromatic compounds (4-nitroaniline (4-NA) and 2-nitroaniline (2-NA)) by Co3O4/CuO nanocomposite. Also, the degradative property of nanocomposite was assessed using both anionic (methyl orange (MO)) and cationic (safranin O (SO)) dyes pollutants and simulated by the linear isotherm models and kinetic equations. Nano metal oxides CuO and Co3O4, as well as its nanocomposite, were synthesized using a precipitation-calcination method. The crystalline pattern, morphological structure, functionality, surface chemistry, and elemental content were evaluated. The catalytic efficiency in the reduction of nitroanilines and dyes was evaluated by sodium borohydride (NaBH4). 100 % conversion of nitroanilines to their corresponding amines could be achieved in just 2 minutes for 4-nitroaniline and 10 minutes for 2-nitroaniline. The Co3O4/CuO nanocomposite shows 100 % and 76.6 % TOC for degradation of MO and SO. Additionally, the nanocomposite demonstrated stable performance over five consecutive reduction cycles for both dyes and NAs. Overall, the synthesized Co3O4/CuO nanocatalyst proves to be a cost-effective and high-performing candidate for remediation of pollutants in wastewater. Its easy recovery nature and efficient catalytic performance make it an excellent choice for environmental cleanup efforts.

Downloads

Download data is not yet available.

Author Biographies

Amir Hossein Sepahvand, Islamic Azad University

Department of Chemistry

Zohreh Derikvand, Islamic Azad University

Department of Chemistry

Saeid Menati, Islamic Azad University

Department of Chemistry

References

1. Lai, C.; Li, B.; Chen, M.; Zeng, G.; Huang, D.; Qin, L.; Liu, X.; Cheng, M.; Wan, J.; Du, C.; Huang, F.; Liu, S.; Yi, H. Int. J. Hydrogen Energy. 2018, 43, 1749-1757. DOI: https://doi.org/10.1016/j.ijhydene.2017.11.025

2. Bakhsh, E.M.; Ali, F.; Khan, S.B.; Marwani, H.M.; Danish, E.Y.; Asiri, A.M. Int. J. Biol. Macromol. 2019, 131, 666-675. DOI: https://doi.org/10.1016/j.ijbiomac.2019.03.095

3. Ameen, F.; Dawoud, T.M.; Alshehrei, F.; Alsamhary, K.; Almansob, A. Chemosphere. 2021, 271, 129532. DOI: https://doi.org/10.1016/j.chemosphere.2021.129532

4. de Barros, M.R.; Winiarski, J.P.; Elias, W.C.; de Campos, C.E.M.; Jost, C.L. J. Environ. Chem. Eng. 2021, 9, 105821. DOI: https://doi.org/10.1016/j.jece.2021.105821

5. Josephy, P.D.; Dhanoa, J.; Elzawy, G.; Heney, K.; Petrie, L.; Senis, C. Environ. Mol. Mutagen.2018, 59, 114-122. DOI: https://doi.org/10.1002/em.22161

6. Melinte, V.; Stroea, L.; Buruiana, T.; Chibac, A.L. Eur. Polym. J. 2019, 121, 109289. DOI: https://doi.org/10.1016/j.eurpolymj.2019.109289

7. Mei, X.; Ding, Y.; Wang, Y.; Yang, Y.; Xu, L.; Wang, Y.; Shen, W.; Zhang, Z.; Ma, M.; Guo, Z.; Xiao, Y.; Yang, X.; Zhou, B.; Xu, K.; Guo, W.; Wang, C. Bioresour. Technol. 2020, 307, 123241. DOI: https://doi.org/10.1016/j.biortech.2020.123241

8. Malakootian, M.; Gharaghani, M.A.; Dehdarirad, A.; Khatami, M.; Ahmadian, M.; Heidari, M.R.; Mahdizadeh, H. J. Mol. Struct. 2019, 1176, 766-776. DOI: https://doi.org/10.1016/j.molstruc.2018.09.033

9. Amani, A.; Derikvand, Z.; Ghadermazi, M. Inorg. Nano-Metal Chem. 2025, 55, 864–879. DOI: https://doi.org/10.1080/24701556.2024.2355507

10. Pereira, I.D.S.; Bamberg, A.L.; Oliveira de Sousa, R.; Monteiro, A.B.; Martinazzo, R.; Posser Silveira, C.A.; de Oliveira Silveira, A. J. Environ. Manag. 2020, 275, 111203. DOI: https://doi.org/10.1016/j.jenvman.2020.111203

11. Smith, S.R. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 4005-4041. DOI: https://doi.org/10.1098/rsta.2009.0154

12. Gu, Y.; Wang, Y.;; Zhang, H. Spectrochim. Acta, Part A. 2018, 202, 260-268. DOI: https://doi.org/10.1016/j.saa.2018.05.008

13. Mazari, S.A.; Ali E.; Abro, R.; Khan, F.S.A.; Ahmed, I.; Ahmed, M.; Nizamuddin, S.; Siddiqui, T.H.; Hossain, N.; Mubarak, N.M.; Shah, A. J. Environ. Chem. Eng, 2021, 9, 105028. DOI: https://doi.org/10.1016/j.jece.2021.105028

14. (a) Gerent, G.G.; Santana, E.R.; Martins, E.C.; Spinelli, A. Food Chem. 2021, 343, 128419; (b) Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Amraei S. Mater. Sci. Engin.: C. 2015, 48, 270-278; (c) Rahimi Fard, M.; Pourghobadi, Z. Anal. Bioanal. Chem. Res. 2018, 5, 249-259; (d) Saki, A.: Pourghobadi, Z.; Derikvand Z. J. Electrochem Soc. 2022, 169, 116507; (e) Alvandi, H.; Dorosti, N.; Afshar; F. Mater. Tech. 2022, 37, 1691-1702.

15. (a) Santana, E.R.; de Lima, C.A.; Piovesan, J.V.; Spinelli, A. Sens. Actuators B Chem. 2017, 240, 487-496; (b) Beiranvand, S.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. J. Electroanal. Chem. 2016, 776, 170-179; (c) Azadbakht, A.; Abbasi, A.R.; Derikvand, Z.; Karimi Z. Nano-Micro Lett. 2015, l.7, 152-164; (d) Dorosti, N.; Delfan, B.; Khodadadi, M. Appl. Organomet. Chem. 2017, 31, e3875.

16. Maiyalagan,T.; Wang, X.; Manthiram, A. RSC Adv. 2014, 4, 4028-4033. DOI: https://doi.org/10.1039/C3RA45262J

17. Hosseinkhani, B.; Søbjer, L.S. g.; Rotaru, A.E.; Emtiazi, G., krydstrup, T. S,; Meyer, R.L. Biotechnol. Bioeng., 2012, 109, 45-52. DOI: https://doi.org/10.1002/bit.23293

18. Ai, L.; Li, L. Chem. Eng. J., 2013, 223, 688-695. DOI: https://doi.org/10.1016/j.cej.2013.03.015

19. Zhang, H.; Jiang, M.; Zhang, D.; Xia, Q. Chem. Eng. Commun. 2009, 197, 377-386. DOI: https://doi.org/10.1080/00986440903089031

20. Jiang, P.; Zhou, J.; Zhang, A.; Zhong, Y. J. Environ. Sci. 2010, 22, 500-506. DOI: https://doi.org/10.1016/S1001-0742(09)60140-6

21. Kumar Dutta, R.; Verma S. J. Environ. Chem.Eng. 2017, 5, 4776-4787. DOI: https://doi.org/10.1016/j.jece.2017.08.026

22. Liu, Z.; Yang, C.; Qiao, C. FEMS Microbiol. Lett., 2007, 277, 150-156. DOI: https://doi.org/10.1111/j.1574-6968.2007.00940.x

23. Modirshahla, N.; Behnajady, M.; Mohammadi-Aghdam S. J. Hazard. Mater. 2008, 154, 778-786. DOI: https://doi.org/10.1016/j.jhazmat.2007.10.120

24. Elfiad, A.; Galli, F.; Boukhobza, L.M.; Djadoun, A.; Boffito D.C. J. Environ. Chem. Eng. 2020, 8, 104214. DOI: https://doi.org/10.1016/j.jece.2020.104214

25. Ghosh, B.K.; Ghosh, N.N. J. Nanosci. Nanotechnol. 2018, 18, 3735-3758. DOI: https://doi.org/10.1166/jnn.2018.15345

26. Wang, C.; Zhang, H.; Feng, Gao.; Shang, C. S.; Wang N. Z. Catal. Commun. 2015, 72, 29-32. DOI: https://doi.org/10.1016/j.catcom.2015.09.004

27. Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee W. Chem. Eng. J., 2020, 384, 123252. DOI: https://doi.org/10.1016/j.cej.2019.123252

28. Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y. J. Phys. Chem. C. 2010, 114, 8814-8820. DOI: https://doi.org/10.1021/jp101125j

29. Derikvand, Z.; Rahmati, F.; Azadbakht, A. Appl. Organomet. Chem. 2019, 33, e4864. DOI: https://doi.org/10.1002/aoc.4864

30. Derikvand, Z.; Azadbakht, A.; Amiri Rudbari H. J. Inorg. Organomet. Poly. Mater. 2019, 29, 502-516. DOI: https://doi.org/10.1007/s10904-018-1022-5

31. Bahrami, M.; Derikvand, Z. J. Mol. Struct., 2022, 1254, 132367. DOI: https://doi.org/10.1016/j.molstruc.2022.132367

32. Lellis, B.; F´avaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Biotechnol. Res. Innov., 2019, 3, 275–290. DOI: https://doi.org/10.1016/j.biori.2019.09.001

33. Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A. G.; Gupta, V.K. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. DOI: https://doi.org/10.1016/j.ecoenv.2017.11.034

34. Alsukaibi, A.K.D. Processes 2022, 10, 1968. DOI: https://doi.org/10.3390/pr10101968

35. Javaid, R.; Qazi, U.Y. Int. J. Environ. Res. Public Health. 2019, 16, 2066. DOI: https://doi.org/10.3390/ijerph16112066

36. Hosseini, S. A. Iran. J. Chem. Engin. 2017, 14, 83-90.

37. Kumar, R.; Kumar, K.; Thakur, N. Hybrid Advances, 2024, 5, 100129. DOI: https://doi.org/10.1016/j.hybadv.2023.100129

38. Ma, J.; Deng , H.; Zhang , Z.; Zhang , L.; Qin, Z.; Zhang, Y.; Gao, L.; Jiao, T. Colloids Surf. A: Physicochem. Eng. Asp, 2022, 632, 127774. DOI: https://doi.org/10.1016/j.colsurfa.2021.127774

39. Yin, J. J.; Ge, B. C.; Jiao, T. F.; Qin, Z. H.; Yu, M. Q.; Zhang, L. X.; Zhang, Q. R.; Peng Q. M. Langmuir, 2021, 37, 1267-1278. DOI: https://doi.org/10.1021/acs.langmuir.0c03297

40. Jeon, S.; Ko, J.W.; Bae, K.W. Elastom. Compos., 2020, 55, 191-198.

41. Lin, X.; Huang, T.; Huang, F.; Wang, W.; Shi, J. J. Mater. Chem. 2007, 17, 2145-2150. DOI: https://doi.org/10.1039/b615903f

42. Zarbakhsh, E.; Derikvand, Z. Appl. Organomet. Chem. 2024, 38, e7674. DOI: https://doi.org/10.1002/aoc.7674

43. Rattanakit, P.; Chutimasakul, T.; Darakai, V.; Nurerk, P.; Putnin, T. S. Afr. J. Chem. Eng. 2024, 47, 270–278. DOI: https://doi.org/10.1016/j.sajce.2023.12.004

44. Su, Z.; Wu, B.; Chen, L.; Tadesse Mosisa, M.; Zhang, P.; Wu, Q.; Kuo, D.-H.; Lu, D.; Ahmed Zelekew, O.; Lin, J.; Chen, X. J. Sci.: Adv. Mater. Devices 2023, 8, 100645. DOI: https://doi.org/10.1016/j.jsamd.2023.100645

45. Derikvand, Z.; Akbari, S.; Kouchakzadeh, G.; Azadbakht, A.; Nemati, A. Russ. J. Phys. Chem. A. 2019, 93, 2604-2612. DOI: https://doi.org/10.1134/S0036024419130089

46. Arul, V.; M.G. Sethuraman, Opt. Mater. 2018, 78, 181-190. DOI: https://doi.org/10.1016/j.optmat.2018.02.029

47. Mallick, K.; Witcomb, M. Scurrell, M. Mate. Chem. Phys. 2006, 97, 283-287. DOI: https://doi.org/10.1016/j.matchemphys.2005.08.011

×

Downloads

Published

2025-10-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 10 11 12 13 14 15 

You may also start an advanced similarity search for this article.

Loading...