Fusarium oxysporum Tolerance assay in Strawberry (Fragaria x ananassa) Varieties and Analysis of FaPAL Gene Expression in an In vitro System

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i2.2162

Keywords:

Beta-aminobutyric acid, chitosan, FaPAL genes, flavonoids, Fragaria x ananassa Nikté

Abstract

Abstract. Strawberry (Fragaria x ananassa) is one of the most commercially important fruits worldwide, and produces nutraceuticals flavonoids as pelargonidin, and other important antioxidants like quercetin and kaempferol. In Mexico, several strawberry varieties have been developed looking for more resistant plants to different pathogens like Fusarium oxysporum. Phenolics and flavonoids have been recognized as part of the defense mechanism of plants. These compounds arise from phenylalanine ammonia lyase (PAL) enzyme activity and strawberry contains several FaPAL genes; however, most publications don’t specify which one is being analyzed, or they are used interchangeably. Although FaPAL1, FaPAL2 and FaPAL6 have been isolated, no expression differences nor analysis of their promoters have been done. In this work we use an in vitro system to analyze the putative Fusarium oxysporum tolerance of ‘Camino Real’ and ‘Nikté’ strawberry cultivars grown in Mexico. Phenotypical traits, phenolics and flavonoids from control and infected plants were analyzed. We also made a bioinformatic analysis of the FaPAL genes from complete and partial cDNAs, and genomics comparisons. The two FaPAL gene families were recognized. Cis-active elements were analyzed in the promotor regions of both FaPAL gene families and the specific expression of FaPAL1 and FaPAL2 genes was analyzed in comparison with defensive genes like FaMBL1, FaWRKY1, FaCyf1, FaChi3, and FaPR1, upon the application of chitosan and beta-aminobutyric acid (BABA) as elicitors. Specific responses were related to FaEF1-alfa and FaGAPDH2 as optimal reference genes. We found that FaPAL1 and FaPAL2 responded strongly to chitosan, and BABA response suggest a downregulation of FaPAL1.

 

Resumen. La fresa (Fragaria x ananassa) es una de las frutas de mayor importancia comercial a nivel mundial, y produce flavonoides nutracéuticos como la pelargonidina y otros importantes antioxidantes como la quercetina y el kaempferol. En México se han desarrollado diversas variedades de fresa buscando plantas más resistentes a diferentes patógenos como Fusarium oxysporum. Los fenólicos y flavonoides han sido reconocidos como parte del mecanismo de defensa de las plantas. Estos compuestos surgen de la actividad de la enzima fenilalanina amonio liasa (PAL) y la fresa contiene varios genes FaPAL; sin embargo, la mayoría de las publicaciones no especifican cuál se está analizando o se usan indistintamente. Aunque se han aislado FaPAL1, FaPAL2 y FaPAL6, no se han realizado análisis de diferencias de expresión ni de sus promotores. En este trabajo utilizamos un sistema in vitro para analizar la supuesta tolerancia a Fusarium oxysporum de los cultivares de fresa ‘Camino Real’ y ‘Nikté’ cultivados en México. Se analizaron rasgos fenotípicos, fenólicos y flavonoides de plantas control e infectadas. También realizamos un análisis bioinformático de los genes FaPAL a partir de ADNc completos y parciales, y comparaciones genómicas. Se reconocieron las dos familias de genes FaPAL. Se analizaron elementos activos cis en las regiones promotoras de las dos familias de FaPAL1 y se analizó la expresión específica de los genes FaPAL1 y FaPAL2 en comparación con genes defensivos como FaMBL1, FaWRKY1, FaCyf1, FaChi3 y FaPR1, tras la aplicación de quitosano y ácido beta-aminobutírico (BABA) como inductores. Las respuestas específicas se relacionaron con FaEF1α y FaGAPDH2 como genes de referencia óptimos. Encontramos que FaPAL1 y FaPAL2 respondieron fuertemente al quitosano, y la respuesta de BABA sugiere una regulación negativa de FaPAL1.

Downloads

Download data is not yet available.

Author Biographies

Yazmín García-Canales, CINVESTAV-IPN Irapuato Unit

Genetic Engineering Department

Alba Estela Jofre-y-Garfias, UNAM Campus Leon

National School of Higher Studies

Silvia Edith Vales-Rodríguez, CINVESTAV-IPN Irapuato Unit

Biotechnology & Biochemistry Department

José Luis Hernández-Flores, CINVESTAV-IPN Irapuato Unit

Genetic Engineering Department

Jesús Alonso Garduño-Hernández, CINVESTAV-IPN Irapuato Unit

Genetic Engineering Department

Quiahuitl María Guadalupe Zavala-Navarro, CINVESTAV-IPN Irapuato Unit

Genetic Engineering Department,

Edmundo Lozoya-Gloria, CINVESTAV-IPN Irapuato Unit

Genetic Engineering Department

References

Duchesne, A. N. Histoire naturelle des fraisiers. Printed by Michel Lambeet, rue des Cord, Collége de Bourgogne, Paris, France 1766.

Liston, A.; Cronn, R.; Ashman, T. L. Am. J. Bot. 2014, 101, 1686-1699. DOI: https://doi.org/10.3732/ajb.1400140. DOI: https://doi.org/10.3732/ajb.1400140

León-López, L.; Guzmán-Ortíz, D. L.; García-Berumen, J. A.; Chávez-Marmolejo, C. G.; Peña-Cabriales, J. J. Rev. Mex. Cienc. Agríc. 2014, 5, 673-686. DOI: https://doi.org/10.29312/remexca.v5i4.929. DOI: https://doi.org/10.29312/remexca.v5i4.929

Garrido, C.; Carbú, M.; Fernández-Acero, F. J.; González-Rodríguez, V. E.; Cantoral, J. M., in: New Insights in the Study of Strawberry Fungal Pathogens. In Genomics, Transgenics, Molecular Breeding Biotechnology of Strawberry. Global Science Books, UK. 2011, 24-39.

Dávalos-Gonzalez, P.A.; Jofre-Garfias, A.E.; Hernandez-Razo, A.R.; Narro-Sanchez, J.; Castro-Franco, J.; Vazquez-Sanchez, N. Bujanos-Muniz, R. Acta Hortic. 2006, 708, 547-552. DOI: https://doi.org/10.17660/ActaHortic.2006.708.97. DOI: https://doi.org/10.17660/ActaHortic.2006.708.97

Dávalos-González, P.; Narro-Sanchez, J.; Jofre-Garfias, A.; Vazquez-Sanchez, M. Int. Soc. Hortic. Sci. 2014, 1049, 263-266. DOI: https://doi.org/10.17660/ActaHortic.2014.1049.33. DOI: https://doi.org/10.17660/ActaHortic.2014.1049.33

Mejía-Ramírez, E., in: Asimilación de carbono, partición de biomasa y producción de fruto en variedades de fresa. MSc Thesis, Colegio de Postgraduados. Campus Montecillo. 2015.

Valencia-Juárez, M. C.; Escobedo-López, D.; Díaz-Espino, L. F.; González-Pérez, E. Rev. Mex. Cienc. Agríc. 2019, 10, 91-100. DOI: https://doi.org/10.29312/remexca.v10i1.1633. DOI: https://doi.org/10.29312/remexca.v10i1.1633

Dávalos-González, P.; Jofre-Garfias, A.; Díaz-Espino, L.; Mariscal-Amaro, L.; López-Pérez, M. Int. Soc. Hortic. Sci. 2017, 1156, 159-166. DOI: https://doi.org/10.17660/ActaHortic.2017.1156.23. DOI: https://doi.org/10.17660/ActaHortic.2017.1156.23

Guevara-Domínguez, P., in: Biosíntesis in vitro de fructooligosacáridos en el sistema Agave tequilana – Fragaria x ananassa. MSc Thesis, CINVESTAV-IPN Irapuato Unit, 2017

Guerrero-Ramírez, E., in: Calidad de vida y postcosecha del fruto de variedades mexicanas de fresa (Fragaria x ananassa Duch.) MSc Thesis, Colegio de Postgraduados. Campus Montecillo, 2017.

Koike, S. T.; Gordon, T. R. Crop Prot. 2015, 73, 67-72. DOI: https://doi.org/10.1016/j.cropro.2015.02.003. DOI: https://doi.org/10.1016/j.cropro.2015.02.003

Castro, F. J.; Dávalos-González, P. Rev. Mex. Fitopat. 1990, 8, 80-86. DOI: https://doi.org/10.18781/r.mex.fit.1904-5.

Ceja-Torres, L.; Mora-Aguilera, G.; Téliz, D.; Mora-Aguilera, A.; Sánchez-García, P.; Muñoz-Ruíz, C.; Tlapal-Bolaños, B.; De La Torre-Almaraz, R. Agrociencia. 2008, 42, 451-461. https://www.redalyc.org/articulo.oa?id=30211241008.

Bárcenas-Santana, D.; Guillén-Sánchez, D.; Yazmín-Basaldua, C.; Ramos-García, M. D.; Valle-de la Paz, M. Rev. Mex. Fitopatol. 2019, 37, 454-463. DOI: https://doi.org/10.18781/R.MEX.FIT.1904-5. DOI: https://doi.org/10.18781/R.MEX.FIT.1904-5

Quintero-Arias, G.; Vargas, J.; Acuña-Caita, J. F.; Valenzuela, J. L., in: Strawberry. In Temperate Fruits. Production, Processing, Marketing. New York, Apple Academic Press. 2021, 449-489. DOI: https://doi.org/10.1201/9781003045861. DOI: https://doi.org/10.1201/9781003045861-8

Pastrana, A. M.; Borrero, C.; Pérez, A. G.; Avilés, M. Plant Sci. 2022, 111533. DOI: https://doi.org/10.1016/j.plantsci.2022.111533. DOI: https://doi.org/10.1016/j.plantsci.2022.111533

Amil-Ruiz, F.; Blanco-Portales, R.; Munoz-Blanco, J.; Caballero, J. L. Plant. Cell. Physiol. 2011, 52, 1873-1903. DOI: https://doi.org/10.1093/pcp/pcr136. DOI: https://doi.org/10.1093/pcp/pcr136

Capocasa, F.; Scalzo, J.; Mezzetti, B. Battino, M. Food Chem. 2008, 111, 872– 878. DOI: https://doi.org/10.1016/j.foodchem.2008.04.068. DOI: https://doi.org/10.1016/j.foodchem.2008.04.068

Dong, N.‐Q.; Lin, H.‐X. J. Integ. Develop. Plant–Envir. Interac. 2020, 63, 180-209. DOI: https://doi.org/10.1111/jipb.13054. DOI: https://doi.org/10.1111/jipb.13054

Ghasemzadeh, A.; Ghasemzadeh, N. Acad. J. 2011, 5, 6697-6703. DOI: https://doi.org/10.5897/JMPR11.1404. DOI: https://doi.org/10.5897/JMPR11.1404

Skadhauge, B.; Thomsen, K. K.; Von Wettstein, D. Hereditas. 1997, 126, 147-160. DOI: https://doi.org/10.1111/j.1601- 5223.1997.00147.x. DOI: https://doi.org/10.1111/j.1601-5223.1997.00147.x

Mierziak, J.; Kostyn, K.; Kulma, A. Molecules. 2014, 19, 16240-16265. DOI: https://doi.org/10.3390/molecules191016240. DOI: https://doi.org/10.3390/molecules191016240

Chen, X.; Wang, P.; Gu, M.; Hou, B.; Zhang, C.; Zheng, Y.; Sun, Y.; Jin, S. Ye, N. Hortic. Plant J. 2022, 8, 381-394. DOI: https://doi.org/10.1016/j.hpj.2021.12.005. DOI: https://doi.org/10.1016/j.hpj.2021.12.005

Landi, L.; Feliziani, E. Romanazzi, G. J. Agric. Food Chem. 2014, 62, 3047-3056. DOI: https://doi.org/10.1021/jf404423x. DOI: https://doi.org/10.1021/jf404423x

Crognale, S.; Russo, C.; Petruccioli, M.; D’annibale, A. Fermentation. 2022, 8, 76. DOI: https://doi.org/10.3390/fermentation8020076. DOI: https://doi.org/10.3390/fermentation8020076

Suresh, P. V.; Sakhare, P. Z.; Sachindra, N. M.; Halami, P. M. J. Food Sci. Technol. 2014, 51, 1594-1599. DOI: https://doi.org/10.1007/s13197-012-0676-1. DOI: https://doi.org/10.1007/s13197-012-0676-1

Al‐Hetar, M. Y.; Zainal Abidin, M. A.; Sariah, M.; Wong, M. Y. J. Appl. Polym. Sci. 2011, 120, 2434-2439. DOI: https://doi.org/10.1002/app.33455. DOI: https://doi.org/10.1002/app.33455

Massoud, M. A.; Kordy, A. M.; Abdel-Mageed, A. A.; Heflish, A. I. A.; Sehier, M. M. J. Adv. Agric. Res. 2020, 25, 176-196. DOI: http://doi.org/10.21608/JALEXU.2020.161766. DOI: https://doi.org/10.21608/jalexu.2020.161766

Benhamou, N.; Lafontaine, P. J.; Nicole, M. Phytopathology. 1994, 84, 1432-1444. DOI: https://doi.org/10.1094/Phyto-84-1432. DOI: https://doi.org/10.1094/Phyto-84-1432

Stasińska-Jakubas, M.; Hawrylak-Nowak, B. Molecules. 2022, 27, 2801. DOI: https://doi.org/10.3390/molecules27092801. DOI: https://doi.org/10.3390/molecules27092801

Papavizas, G. C., in: Greenhouse control of Aphanomyces root rot of peas with aminobutyric acid and methylaspartic acid. In The Plant Disease Reporter. USDA. Beltsville, Maryland. 1964, 537-541.

Jakab, G.; Cottier, V.; Toquin, V.; Rigoli, G.; Zimmerli, L.; Métraux, J. P. Mauch-Mani, B. Eur. J. Plant Pathol. 2001, 107,29–37. DOI: https://doi.org/10.1023/A:1008730721037. DOI: https://doi.org/10.1023/A:1008730721037

Cohen, Y. R. Plant Dis. 2002, 86, 448–457. DOI: https://doi.org/10.1094/PDIS.2002.86.5.448. DOI: https://doi.org/10.1094/PDIS.2002.86.5.448

Huang, T.; Jander, G. de Vos, M. Phytochemistry. 2011, 72, 1531–1537. DOI: https://doi.org/10.1016/j.phytochem.2011.03.019. DOI: https://doi.org/10.1016/j.phytochem.2011.03.019

Balmer, A.; Pastor, V.; Gamir, J.; Flors, V. Mauch-Mani, B. Trends Plant Sci. 2015, 20, 443–452. DOI: https://doi.org/10.1016/j.tplants.2015.04.002. DOI: https://doi.org/10.1016/j.tplants.2015.04.002

Hegedűs, G.; Nagy, Á.; Decsi, K.; Kutasy, B.; Virág, E. Data Brief. 2022, 41, 107983. DOI: https://doi.org/10.1016/j.dib.2022.107983. DOI: https://doi.org/10.1016/j.dib.2022.107983

Murashige, T.; Skoog, F. Physiol. Plant. 1962, 15, 473-497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Fang, X. L.; Phillips, D.; Li, H.; Sivasithamparam, K.; Barbetti, M. J. Australas. Plant Pathol. 2011, 40, 109–119. DOI: https://doi.org/10.1007/s13313-010-0019-5. DOI: https://doi.org/10.1007/s13313-010-0019-5

Giusti, M. Wrolstad, M. J. Food Sci. 1996, 61, 688-694. DOI: https://doi.org/10.1111/j.1365-2621.1996.tb12182.x. DOI: https://doi.org/10.1111/j.1365-2621.1996.tb12182.x

Slinkard, K, Singleton, V. J. Enol. Vitic. 1977, 28, 49-55. DOI: htpp://doi.org/10.5344/ajev.1977.28.1.49. DOI: https://doi.org/10.5344/ajev.1977.28.1.49

Woisky, RG. Salatino, A. J. Apic. Res. 1998, 37, 99-105. DOI: https://doi.org/10.1080/00218839.1998.11100961. DOI: https://doi.org/10.1080/00218839.1998.11100961

Liu, J.; Wang, J.; Wang, M.; Zhao, J.; Zheng, Y.; Zhang, T. Front. Plant Sci. 2021, 12, 702160. DOI: http://doi.org/10.3389/fpls.2021.702160. DOI: https://doi.org/10.3389/fpls.2021.702160

Chen, C.; Chen, H.; Zhang, Y.; Thomas, H. R.; Frank, M. H.; He, Y.; Xia, R. Molec. Plant. 2020, 13, 1194-1202. DOI: https://doi.org/10.1016/j.molp.2020.06.009. DOI: https://doi.org/10.1016/j.molp.2020.06.009

Rombauts, S.; Déhais, P.; Van Montagu, M.; Rouzé, P. Nucleic Acid Res. 1999, 27, 295-296. DOI: https://doi.org/10.1093/nar/27.1.295. DOI: https://doi.org/10.1093/nar/27.1.295

Amil-Ruiz, F.; Garrido-Gala, J.; Blanco-Portales, R.; Folta, K. M.; Muñoz-Blanco, J. Caballero, J. L. PLoS ONE, 2013, 8, e70603. DOI: https://doi.org/10.1371/journal.pone.0070603. DOI: https://doi.org/10.1371/journal.pone.0070603

Martínez, M.; Abraham, Z.; Gambardella, M.; Echaide, M.; Carbonero, P. Diaz, I. J. Exp. Bot. 2005, 56, 1821-1829. DOI: https://doi.org/10.1093/jxb/eri172. DOI: https://doi.org/10.1093/jxb/eri172

Guidarelli, M.; Zoli, L.; Orlandini, A.; Bertolini, P.; Baraldi, E. Mol. Plant Pathol. 2014, 15, 832-840. DOI: https://doi.org/10.1111/mpp.12143. DOI: https://doi.org/10.1111/mpp.12143

Zhou, Y.; Xiong, J.; Shu, Z.; Dong, C.; Gu, T.; Sun, P.; He, S.; Jiang, M.; Xia, Z.; Xue, J.; Khan, W. U.; Chen, F. Cheng, Z-M. Horticult. Res. 2023, 10, uhad027. DOI: https://doi.org/10.1093/hr/uhad027. DOI: https://doi.org/10.1093/hr/uhad027

Tzanetakis, I. E.; Halgren, A.; Mosier, N.; Martin, R. R. Virus Res. 2007, 127, 26-33. DOI: https://doi.org/10.1016/j.virusres.2007.03.010. DOI: https://doi.org/10.1016/j.virusres.2007.03.010

Rott, M. E.; Jelkmann, W. Eur. J. Plant Pathol. 2001, 107, 411-420. DOI: https://doi.org/10.1023/A:1011264400482. DOI: https://doi.org/10.1023/A:1011264400482

Livak, K. J. Schmittgen, T. D. Methods. 2001, 5, 402−408. DOI: https://doi.org/10.1006/meth.2001.1262. DOI: https://doi.org/10.1006/meth.2001.1262

Mariscal-Amaro, L.; Rivera-Yerena, A.; Dávalos-González, P.; Ávila-Martínez, D. México. Agrociencia, 2017, 51, 673-61. http://www.redalyc.org/articulo.oa?id=30252708007

Gill, U. S.; Uppalapati, S. R.; Gallego‐Giraldo, L.; Ishiga, Y.; Dixon, R. A.; Mysore, K. S. Plant Cell Environ. 2017, 41, 1997- 2007. DOI: https://doi.org/10.1111/pce.13093. DOI: https://doi.org/10.1111/pce.13093

Lee, J. H.; Lee, S. J.; Park, S.; Jeong, S. W.; Kim, C. Y.; Jin, J. S.; Shin, S. C. Food Chem. 2012, 133, 1653-1657. DOI: https://doi.org/10.1016/j.foodchem.2012.02.063. DOI: https://doi.org/10.1016/j.foodchem.2012.02.063

Wojtasik, W.; Kulma, A.; Dymińska, L.; Hanuza, J.; Czemplik, M.; Szopa, J. BMC Plant Biol. 2016, 75, 1-16. DOI: https://doi.org/10.1186/s12870-016-0762-z. DOI: https://doi.org/10.1186/s12870-016-0762-z

Romero-Rincón, A.; Martínez, S. T.; Higuera, B. L.; Coy-Barrera, E.; Duban, A. H. Phytochemistry. 2021, 192, 1-14. DOI: https://doi.org/10.1016/j.phytochem.2021.112933. DOI: https://doi.org/10.1016/j.phytochem.2021.112933

Galdino, A. C.; de Freitas, M. B.; de Borba, M. C.; Stadnik, M. J. Trop. Plant Pathol. 2021, 46, 553–558. DOI: https://doi.org/10.1007/s40858-021-00440-6. DOI: https://doi.org/10.1007/s40858-021-00440-6

Nagpala, E. G.; Guidarelli, M.; Gasperotti, M.; Masuero, D.; Bertolini, P.; Vrhovsek, U.; Elena, B. Agric. Food Chem. 2016, 64, 1869–1878. DOI: https://doi.org/10.1021/acs.jafc.5b06005. DOI: https://doi.org/10.1021/acs.jafc.5b06005

Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Weber, N.; Veberic, R.; Stampar, F.; Munda, A.; Koron, D. J. Agric. Food Chem. 2013, 61, 5987−5995. DOI: https://doi.org/10.1021/jf402105g. DOI: https://doi.org/10.1021/jf402105g

Haile, Z. M.; Nagpala-De Guzman, E. G.; Moretto, M.; Sonego, P.; Engelen, K.; Zoli, L.; Baraldi, E. Front. Plant Sci. 2019, 10, 1-17. DOI: https://doi.org/10.3389/fpls.2019.01131. DOI: https://doi.org/10.3389/fpls.2019.01131

Hano, C.; Addi, M.; Fliniaux, O.; Bensaddek, L.; Duverger, E.; Mesnard, F.; Lainé, E. Plant Physiol. Biochem. 2008, 46, 590- 600. DOI: https://doi.org/10.1016/j.plaphy.2008.02.004. DOI: https://doi.org/10.1016/j.plaphy.2008.02.004

Weber, N.; Veberic, R.; Mikulic-Petkovsek, M.; Stampar, F.; Koron, D.; Munda, A.; Jakopic, J. Physiol. Molec. Plant Pathol. 2015, 92, 119-129. DOI: http://dx.doi.org/10.1016/j.pmpp.2015.10.003. DOI: https://doi.org/10.1016/j.pmpp.2015.10.003

Pombo, M. A.; Rosli, H. G.; Martínez, G. A. Civello, P. M. Postharv. Biol. Technol. 2011, 59, 94-102. DOI: https://doi.org/10.1016/j.postharvbio.2010.08.003. DOI: https://doi.org/10.1016/j.postharvbio.2010.08.003

Li, G.; Wang, H.; Cheng, X.; Su, X.; Zhao, Y.; Jiang, T.; Jin, Q.; Lin, Y. Cai, Y. PeerJ, 2019, 7, e8064. DOI: https://doi.org/10.7717/peerj.8064. DOI: https://doi.org/10.7717/peerj.8064

Parra-Palma, C.; Morales-Quintana, L.; Ramos, P. Agronomy, 2020, 10, 588. DOI: https://doi.org/10.3390/agronomy10040588 DOI: https://doi.org/10.3390/agronomy10040588

Pillet, J.; Yu, H.-W.; Chambers, A.H.; Whitaker, V.M.; Folta, K.M. J. Exp. Bot. 2015, 66, 4455–4467. DOI: https://doi.org/10.1093/jxb/erv205. DOI: https://doi.org/10.1093/jxb/erv205

Liu, Y.; Ye, Y.; Wang, Y.; Jiang, L.; Yue, M.; Tang, L.; Tang, H. Int. J. Molec. Sci. 2022, 23, 7757. DOI: https://doi.org/10.3390/ijms23147757. DOI: https://doi.org/10.3390/ijms23147757

Martínez‐Rivas, F. J.; Blanco‐Portales, R.; Serratosa, M. P.; Ric‐Varas, P.; Guerrero‐Sánchez, V.; Medina‐Puche, L.; Molina‐ Hidalgo, F. J. Plant J. 2023, 114, 683-698. DOI: https://doi.org/10.1111/tpj.16166. DOI: https://doi.org/10.1111/tpj.16166

Gaete-Eastman, C.; Stappung, Y.; Molinett, S.; Urbina, D.; Moya-Leon, M. A.; Herrera, R. Front. Plant Sci. 2022, 13, 976901. DOI: https://doi.org/10.3389/fpls.2022.976901. DOI: https://doi.org/10.3389/fpls.2022.976901

Ma, C.; Xiong, J.; Liang, M.; Liu, X.; Lai, X.; Bai, Y.; Cheng, Z. Agronomy. 2021, 11, 2377. DOI: https://doi.org/10.3390/agronomy11122377. DOI: https://doi.org/10.3390/agronomy11122377

Khan, A. A.; Shih, D. S. Plant Sci. 2004, 166, 753-762. DOI: https://doi.org/10.1016/j.plantsci.2003.11.015. DOI: https://doi.org/10.1016/j.plantsci.2003.11.015

Manning, K. Planta. 1998, 205, 622–631. DOI: https://doi.org/10.1007/s004250050365. DOI: https://doi.org/10.1007/s004250050365

Ma, L.; Haile, Z.; Sabbadini, S.; Mezzetti, B.; Negrini, F.; Baraldi, E. J. Exp. Bot. 2022, 74, 149-161. DOI: https://doi.org/10.1093/jxb/erac396. DOI: https://doi.org/10.1093/jxb/erac396

Mo, F.; Luo, Y.; Ge, C.; Mo, Q.; Ling, Y.; Luo, S.; Tang, H., in: Cloning and expression analysis of FaPR-1 gene in strawberry. 1956, 26-28 September, 2017; Trincone, A.; Azevedo, J. L. Gong, M. (Eds.), AIP Publishing, Offenburg, Germany, 2018, 020009. DOI: https://doi.org/10.1063/1.5034261. DOI: https://doi.org/10.1063/1.5034261

Liang, W.; Wang, M.; Du, B.; Ling, L.; Bi, Y.; Zhang, J.; Sun, Y.; Zhou, S.; Zhang, L.; Ma, X.; Ma, J.; Wu, L. Guo, C. Biotechnol. Biotechnol. Equip. 2022, 36, 684-696. DOI: https://doi.org/10.1080/13102818.2022.2106886. DOI: https://doi.org/10.1080/13102818.2022.2106886

Encinas-Villarejo, S.; Maldonado, A. M.; Amil-Ruiz, F.; de los Santos, B.; Romero, F.; Pliego-Alfaro, F.; Muñoz-Blanco, J.; Caballero, J. L. J. Exp. Bot. 2009, 60, 3043-3065. DOI: https://doi.org/10.1093/jxb/erp152. DOI: https://doi.org/10.1093/jxb/erp152

Wang, Y.; Zhao, F.; Zhang, G.; Jia, S.; Yan, Z. Sci. Hortic. 2021, 279, 109893. DOI: https://doi.org/10.1016/j.scienta.2020.109893. DOI: https://doi.org/10.1016/j.scienta.2020.109893

Gambardella, M.; Ríos, R.; Aballay, E.; Cambra, I.; Diaz, I.; Acta Hortic. 2010, 926, 113-117. DOI: https://doi.org/10.17660/ActaHortic.2012.926.15. DOI: https://doi.org/10.17660/ActaHortic.2012.926.15

Zimmerli, L.; Jakab, G.; Métraux, J. P.; Mauch-Mani, B. PNAS. 2000, 97, 12920-12925. DOI: https://doi.org/10.1073/pnas.230416897. DOI: https://doi.org/10.1073/pnas.230416897

Yi-Lan, J.; Shi-Long, J.; Xuan-Li, J. Arch. Microbiol. 2021, 203, 3623-3632. DOI: https://doi.org/10.1007/s00203-021-02350-2. DOI: https://doi.org/10.1007/s00203-021-02350-2

Almoneafy, A. A.; Ojaghian, M. R.; Seng-fu, X.; Ibrahim, M.; Guan-Lin, X.; Yu, S.; Wen-Xiao, T. Bin, L. Trop. Plant Pathol. 2013, 38, 102-113. DOI: https://doi.org/10.1590/S1982-56762013000200003. DOI: https://doi.org/10.1590/S1982-56762013000200003

Baccelli, I. Mauch-Mani, B. Plant Mol. Biol. 2016, 91, 703–711. DOI: https://doi.org/10.1007/s11103-015-0406-y. DOI: https://doi.org/10.1007/s11103-015-0406-y

Cai, J.; Aharoni, A. Curr. Opin. Plant Biol. 2022, 69, 102288. DOI: https://doi.org/10.1016/j.pbi.2022.102288. DOI: https://doi.org/10.1016/j.pbi.2022.102288

Khan, W.; Prithiviraj, B.; Smith, D. L. J. Plant Physiol. 2003, 160, 859-863. DOI: https://doi.org/10.1078/0176-1617-00905. DOI: https://doi.org/10.1078/0176-1617-00905

Rahman, M.; Mukta, J. A.; Sabir, A. A.; Gupta, D. R.; Mohi-Ud-Din, M.; Hasanuzzaman, M.; Islam, M. T. PLoS ONE, 2018, 13, e0203769. DOI: https://doi.org/10.1371/journal.pone.0203769. DOI: https://doi.org/10.1371/journal.pone.0203769

Wang, K.; Liao, Y.; Xiong, Q.; Kan, J.; Cao, S. Zheng, Y. J. Agric. Food Chem. 2016, 64, 5855-5865. DOI: https://doi.org/10.1021/acs.jafc.6b00947. DOI: https://doi.org/10.1021/acs.jafc.6b00947

Jannatizadeh, A.; Aghdam, M. S.; Farmani, B.; Maggi, F. Morshedloo, M. R. Sci. Hortic. 2018, 240, 249-257. DOI: https://doi.org/10.1016/j.scienta.2018.06.048. DOI: https://doi.org/10.1016/j.scienta.2018.06.048

Li, S.; Wang, G.; Chang, L.; Sun, R.; Wu, R.; Zhong, C.; Sun, J. Int. J. Mol. Sci. 2022, 23, 11961. DOI: https://doi.org/10.3390/ijms231911961. DOI: https://doi.org/10.3390/ijms231911961

Fatima, S.; Cheema, K.; Shafiq, M.; Manzoor, M.; Ali, Q.; Haider, M.; Shahid, M. Bull. Biol. Alli. Sci. Res. 2023, 2023, 38-38. DOI: https://doi.org/10.54112/bbasr.v2023i1.3. DOI: https://doi.org/10.54112/bbasr.v2023i1.38

Sánchez-Gómez, C.; Posé, D.; Martín-Pizarro, C. Front. Plant Sci. 2022, 13, 1022369. DOI: https://doi.org/10.3389/fpls.2022.1022369. DOI: https://doi.org/10.3389/fpls.2022.1022369

Wanner, L. A.; Li, G.; Ware, D.; Somssich, I. E. Davis, K. R. Plant Mol. Biol. 1995, 27, 327-338. DOI: https://doi.org/10.1007/BF00020187. DOI: https://doi.org/10.1007/BF00020187

Huang, J.; Gu, M.; Lai, Z.; Fan, B.; Shi, K.; Zhou, Y. H.; Yu, J. Q. Chen, Z. Plant Physiol. 2010, 153, 1526-1538. DOI: https://doi.org/10.1104/pp.110.157370. DOI: https://doi.org/10.1104/pp.110.157370

Dong, C. J. Shang, Q. M. Planta. 2013, 238, 35-49. DOI: https://doi.org/10.1007/s00425-013-1869-1 DOI: https://doi.org/10.1007/s00425-013-1869-1

de Jong, F.; Hanley, S. J.; Beale, M. H. Karp, A. Phytochemistry. 2015, 117, 90-97. DOI: https://doi.org/10.1016/j.phytochem.2015.06.005. DOI: https://doi.org/10.1016/j.phytochem.2015.06.005

Dong, C. J.; Ning, C.; Zhang, Z. G. Shang, Q. M. J. Integr. Agric. 2016, 15, 1239-1255. DOI: https://doi.org/10.1016/S2095-3119(16)61329-1. DOI: https://doi.org/10.1016/S2095-3119(16)61329-1

Yan, F.; Li, H. Zhao, P. Genes. 2019, 10, 46. DOI: https://doi.org/10.3390/genes10010046. DOI: https://doi.org/10.3390/genes10010046

Ren, W.; Wang, Y.; Xu, A. Zhao, Y. Legume Res. 2019, 42, 461-466. DOI: https://doi.org/10.18805/LR-431. DOI: https://doi.org/10.18805/LR-431

Gho, Y. S.; Kim, S. J. Jung, K. H. Genes Genom. 2020, 42, 67-76. DOI: https://doi.org/10.1007/s13258-019-00879-7. DOI: https://doi.org/10.1007/s13258-019-00879-7

Jiang, L.; Yue, M.; Liu, Y.; Ye, Y.; Zhang, Y.; Lin, Y.; Wang, X.; Chen, Q. Tang, H. Int. J. Mol. Sci. 2022, 23, 7375. DOI: https://doi.org/10.3390/ijms23137375. DOI: https://doi.org/10.3390/ijms23137375

Pant, S.; Huang, Y. Sci. Rep. 2022, 12, 22537. DOI: https://doi.org/10.1038/s41598-022-25214-1. DOI: https://doi.org/10.1038/s41598-022-25214-1

Zhang, F.; Wang, J.; Li, X.; Zhang, J.; Liu, Y.; Chen, Y.; Yu, Q.; Li, N. Front. Plant Sci. 2023, 14, 1204990. DOI: https://doi.org/10.3389/fpls.2023.1204990. DOI: https://doi.org/10.3389/fpls.2023.1132017

Kariñho-Betancourt, E.; Carlson, D.; Hollister, J.; Fischer, A.; Greiner, S.; Johnson, M. T. PLoS ONE, 2022, 17, e0269307. DOI: https://doi.org/10.1371/journal.pone.0269307. DOI: https://doi.org/10.1371/journal.pone.0269307

×

Downloads

Additional Files

Published

2025-04-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...