Electrochemistry for Solar Energy Conversion Systems: A Selection of Mexican Contributions
DOI:
https://doi.org/10.29356/jmcs.v67i4.2048Keywords:
Electrodeposition, thermosolar systems, dye-sensitized solar cells, electrochemistry, solar energyAbstract
Abstract. Electrochemistry is a key technology to synthesize, study and scale-up materials and processes for applications in solar energy conversion systems. Mexico has had a tradition of excellence in electrochemistry research and methodology development, and this paper intends to honor some of the key contributors in the subjects of solar energy conversion to useful heat or electricity. We summarize the use of electrochemical techniques as a tool for the deposition and characterization, including the analysis of electrodeposition solutions and deposition mechanisms. In addition, we describe the use of electrodeposited and hybrid ZnO films for application in dye-sensitized solar cells, which are photoelectrochemical systems, and discuss the mechanisms that govern solar cell performance.
Resumen. La electroquímica es una tecnología clave para sintetizar, estudiar y escalar materiales y procesos para aplicaciones en sistemas de conversión de energía solar. México ha tenido una tradición de excelencia en la investigación y el desarrollo de metodologías electroquímicas, y este documento tiene la intención de honrar a algunos de los principales contribuyentes en los temas de conversión de energía solar en calor o electricidad útil. Resumimos el uso de técnicas electroquímicas como herramienta para la deposición y caracterización, incluyendo el análisis de soluciones de electrodepósito y mecanismos de deposición. Además, se describe el uso de películas de ZnO híbridas y electrodepositadas para su aplicación en celdas solares sensibilizadas con tinte, que son sistemas fotoelectroquímicos, y discutimos los mecanismos que gobiernan el rendimiento de las celdas solares.
Downloads
References
Khalil, A.; Khaira, A. M.; Abu-Shanab, R. H.; Abdelgaied, M. A. Sol. Energy. 2023, 253, 154–174. DOI: https://doi.org/10.1016/j.solener.2023.02.032. DOI: https://doi.org/10.1016/j.solener.2023.02.032
Abdalla, A. N.; Jing, W.; Nazir, M. S.; Jiang, M.; Tao, H. in: Socio-Economic Impacts of Solar Energy Technologies for Sustainable Green Energy: A Review; Springer Netherlands, 2022. DOI: https://doi.org/10.1007/s10668-022-02654-3. DOI: https://doi.org/10.1007/s10668-022-02654-3
Kennedy, C. E. Natl. Renew. Energy Lab. 2002, 1-53.
Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. J. Appl. Electrochem. 2001, 31, 685–692. DOI: https://doi.org/10.1023/A:1017580025961. DOI: https://doi.org/10.1023/A:1017580025961
Soto, A. B.; Arce, E. M.; Palomar-Pardavé, M.; González, I. Electrochim. Acta. 1996, 41, 2647–2655. DOI: https://doi.org/10.1016/0013-4686(96)00088-6. DOI: https://doi.org/10.1016/0013-4686(96)00088-6
Ibanez, J. G.; Ibanez, J. G.; Choi, C.; Becker, R. S. J. Electrochem. Soc. 1987, 134, 3083–3089. DOI: https://doi.org/10.1149/1.2100344. DOI: https://doi.org/10.1149/1.2100344
Liu, H.; Zhao, X.; Yang, Y.; Li, Q.; Lv, J. Adv. Mater. 2008, 20, 2050–2054. DOI: https://doi.org/10.1002/adma.200702624. DOI: https://doi.org/10.1002/adma.200702624
Vullum, F.; Teeters, D. J. Power Sources. 2005, 146, 804–808. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086
Lizama-Tzec, F. I.; Frutis, A.; Gattorno, G.; Oskam, G. J. New Mater. Electrochem. Syst. 2013, 16, 209–215. DOI: https://doi.org/10.14447/jnmes.v16i3.20. DOI: https://doi.org/10.14447/jnmes.v16i3.20
Lizama-Tzec, F. I.; Canché-Canul, L.; Oskam, G. Electrochim. Acta. 2011, 56, 9391–9396. DOI: https://doi.org/10.1016/j.electacta.2011.08.023. DOI: https://doi.org/10.1016/j.electacta.2011.08.023
Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P. Appl. Phys. Lett. 2009, 95, 1–4. DOI: https://doi.org/10.1063/1.3263733. DOI: https://doi.org/10.1063/1.3263733
Barrera, E.; González, I.; Viveros, T. Sol. Energy Mater. Sol. Cells. 1998, 51, 69–82. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2
Lizama-Tzec, F. I.; Macías, J. D.; Estrella-Gutiérrez, M. A.; Cahue-López, A. C.; Arés, O.; de Coss, R.; Alvarado-Gil, J. J.; Oskam, G. J. Mater. Sci. Mater. Electron. 2015, 26, 5553-5561. DOI: https://doi.org/10.1007/s10854-014-2195-5. DOI: https://doi.org/10.1007/s10854-014-2195-5
Ortiz, Z. I.; Díaz-Arista, P.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Corros. Sci. 2009, 51, 2703–2715. DOI: https://doi.org/10.1016/j.corsci.2009.07.002. DOI: https://doi.org/10.1016/j.corsci.2009.07.002
Trejo, G.; Ortega, R.; Meas, Y.; Chainet, E.; Ozil, P. J. Appl. Electrochem. 2003, 33, 373–379. DOI: https://doi.org/10.1023/A:1024466604939. DOI: https://doi.org/10.1023/A:1024466604939
Rivas-Esquivel, F. M.; Brisard, G. M.; Ortega-Borges, R.; Trejo, G.; Escobedo, P. Int. J. Electrochem. Sci 2017, 12, 2026–2041. DOI: https://doi.org/10.20964/2017.03.58. DOI: https://doi.org/10.20964/2017.03.58
17. Luis Ortiz-Aparicio, J.; Meas, Y.; Trejo, G.; Ortega, R.; Chapman, T. W.; Chainet, E. J Appl Electrochem 2013, 43, 289–300. DOI: https://doi.org/10.1007/s10800-012-0518-x. DOI: https://doi.org/10.1007/s10800-012-0518-x
Duffie, J. A.; Beckman, W. A.; Worek, W. M., in: Solar Engineering of Thermal Processes, 1994, 67-70. DOI: https://doi.org/10.1115/1.2930068
Xiao, X.; Miao, L.; Xu, G.; Lu, L.; Su, Z.; Wang, N.; Tanemura, S. Appl. Surf. Sci. 2011, 257, 10729–10736. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088
Garcia-Valladares, O.; Figueroa, I. P., in: Aplicaciones Térmicas de La Energía Solar, 2017, 1-156.
Esposito, S.; Antonaia, A.; Addonizio, M. L.; Aprea, S. Thin Solid Films. 2009, 517, 6000–6006. DOI: https://doi.org/10.1016/j.tsf.2009.03.191. DOI: https://doi.org/10.1016/j.tsf.2009.03.191
Selvakumar, N.; Barshilia, H. C. Sol. Energy Mater. Sol. Cells. 2012, 98, 1–23. DOI: https://doi.org/10.1016/j.solmat.2011.10.028. DOI: https://doi.org/10.1016/j.solmat.2011.10.028
Salmi, J.; Bonino, J. P.; Bes, R. S. J. Mater. Sci. 2000, 35, 1347–1351. DOI: https://doi.org/10.1023/A:1004773821962. DOI: https://doi.org/10.1023/A:1004773821962
Klochko, N. P.; Klepikova, K. S.; Tyukhov, I. I.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Kopach, A. V.; Starikov, V. V.; Kirichenko, M. V. Sol. Energy. 2015, 117, 1–9. DOI: https://doi.org/10.1016/j.solener.2015.03.047. DOI: https://doi.org/10.1016/j.solener.2015.03.047
Koltun, M.; Gukhman, G.; Gavrilina, A. Sol. Energy Mater. Sol. Cells. 1994, 33, 41–44. DOI: https://doi.org/10.1016/0927-0248(94)90287-9. DOI: https://doi.org/10.1016/0927-0248(94)90287-9
Shawki, S.; Mikhail, S. Mater. Manuf. Process. 2000, 15, 737–746. DOI: https://doi.org/10.1080/10426910008913017. DOI: https://doi.org/10.1080/10426910008913017
John, S. Met. Finish. 1997, 95, 84–86. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9
Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta 2016, 213, 460–468. DOI: https://doi.org/10.1016/j.electacta.2016.07.125. DOI: https://doi.org/10.1016/j.electacta.2016.07.125
Lizama-Tzec, F. I.; Manterola-Villanueva, G.; García-Valladares, O.; Herrera-Zamora, D. M.; Oskam, G.; Rodríguez-Gattorno, G. J. Energy, Eng. Optim. Sustain. 2023, 7, 49-62. DOI: 10.19136/jeeos.a7n2.5677.
Herrera-Zamora, D. M.; Lizama-Tzec, F. I.; Santos-González, I.; Rodríguez-Carvajal, R. A.; García-Valladares, O.; Arés-Muzio, O.; Oskam, G. Sol. Energy. 2020, 207, 1132–1145. DOI: https://doi.org/10.1016/j.solener.2020.07.042. DOI: https://doi.org/10.1016/j.solener.2020.07.042
Smith, G. B.; Ignatiev, A.; Zajac, G. J. Appl. Phys. 1980, 51, 4186–4196. DOI: https://doi.org/10.1063/1.328276. DOI: https://doi.org/10.1063/1.328276
Prakash, E. S.; Madhukeshwaran, N. Int. J. Energy Environ. 2012, 3, 2076-2909.
Kruidhof, W.; van der Leij, M. Sol. Energy Mater. Sol. Cells. 1979, 2, 69–79. DOI: https://doi.org/10.1016/0165-1633(79)90031-5
Barrera, E.; Pardavé, M. P.; Batina, N.; González, I. J. Electrochem. Soc. 2000, 147, 1787-1796. DOI: https://doi.org/10.1149/1.1393435. DOI: https://doi.org/10.1149/1.1393435
Barrera, C. E.; Salgado, L.; Morales, U.; González, I. Renew. Energy. 2001, 24, 357–364. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9
John, S.; Nagarani, N.; Rajendran, S. Sol. Energy Mater. 1991, 22, 293–302. DOI: https://doi.org/10.1016/0165-1633(91)90036-K. DOI: https://doi.org/10.1016/0165-1633(91)90036-K
Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Mater. Charact. 2005, 55, 83–91. DOI: https://doi.org/10.1016/j.matchar.2005.03.003. DOI: https://doi.org/10.1016/j.matchar.2005.03.003
Palomar-Pardavé, M.; Aldana-González, J.; Botello, L. E.; Arce-Estrada, E. M.; Ramírez-Silva, M. T.; Mostany, J.; Romero-Romo, M. Electrochim. Acta. 2017, 241, 162–169. DOI: https://doi.org/10.1016/j.electacta.2017.04.126. DOI: https://doi.org/10.1016/j.electacta.2017.04.126
Landa-Castro, M.; Aldana-González, J.; Montes de Oca-Yemha, M. G.; Romero-Romo, M.; Arce-Estrada, E. M.; Palomar-Pardavé, M. J. Alloys Compd. 2020, 830, 1–9. DOI: https://doi.org/10.1016/j.jallcom.2020.154650. DOI: https://doi.org/10.1016/j.jallcom.2020.154650
Manh, T. Le; Arce-Estrada, E. M.; Mejía-Caballero, I.; Aldana-González, J.; Romero-Romo, M.; Palomar-Pardavé, M. J. Electrochem. Soc. 2018, 165, D285–D290. DOI: https://doi.org/10.1149/2.0941807jes. DOI: https://doi.org/10.1149/2.0941807jes
Palomar-Pardavé, M.; González, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443, 125–136. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8
Barrera, C. E.; Lara, V. H.; Viveros, G. T.; González, M. I. Surf. Eng. 2000, 16, 50–53. DOI: https://doi.org/10.1179/026708400322911528. DOI: https://doi.org/10.1179/026708400322911528
Toghdori, G.; Rozati, S. M.; Memarian, N.; Arvand, M.; Bina, M. H. Proceedings of the World Renewable Energy Congress – Sweden, 2011, 57, 4021–4026. DOI: https://doi.org/10.3384/ecp110574021. DOI: https://doi.org/10.3384/ecp110574021
Vitt, B. Sol. Energy Mater. 1986, 13, 323–350. DOI: https://doi.org/10.1016/0165-1633(86)90082-1. DOI: https://doi.org/10.1016/0165-1633(86)90082-1
Vitt, B. Sol. Collect. 1987, 43, 244–252. DOI: https://doi.org/10.1016/0095-8956(87)90024-4
Rodriguez-Valadez, F.; Ortiz-Éxiga, C.; Ibanez, J. G.; Alatorre-Ordaz, A.; Gutierrez-Granados, S. Environ. Sci. Technol. 2005, 39, 1875–1879. DOI: https://doi.org/10.1021/es049091g. DOI: https://doi.org/10.1021/es049091g
Morales, U.; Meas, Y.; Poillerat, G. C. R. Seances Acad. Sci. 1984, 298, 117–119.
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Archer, J.; John, C. Trans. Inst. Met. Finish. 2004, 82, 14–17. DOI: https://doi.org/10.1080/00202967.2004.11871547. DOI: https://doi.org/10.1080/00202967.2004.11871547
Ritchie, I. T.; Sharma, S. K.; Valignat, J.; Spitz, J. Sol. Energy Mater. 1979, 2, 167–176. DOI: https://doi.org/10.1016/0165-1633(79)90016-9. DOI: https://doi.org/10.1016/0165-1633(79)90016-9
Spitz, J.; Van Danh, T.; Aubert, A. Sol. Energy Mater. 1979, 1, 189–200. DOI: https://doi.org/10.1016/0165-1633(79)90037-6. DOI: https://doi.org/10.1016/0165-1633(79)90037-6
Raghunathan, K. Second Annu. Conf. Absorber Surfaces Sol. Receiv. 1979, 222.
Pettit, R. B.; Sowell, R. R.; Hall, I. J. Sol. Energy Mater. 1982, 7, 153–170. DOI: https://doi.org/10.1016/0165-1633(82)90081-8. DOI: https://doi.org/10.1016/0165-1633(82)90081-8
Xu, C.; Wang, X.; Liu, J. ACS Appl. Mater. Interfaces. 2022, 14, 33211-33218. DOI: https://doi.org/10.1021/acsami.2c07469. DOI: https://doi.org/10.1021/acsami.2c07469
Cetina-Dorantes, M.; Lizama-Tzec, F. I.; Estrella-Gutiérrez, M. A.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta. 2021, 391, 11–17. DOI: https://doi.org/10.1016/j.electacta.2021.138906. DOI: https://doi.org/10.1016/j.electacta.2021.138906
Uma, C. S.; Malhotra, L. K.; Chopra, K. L. Bull. Mater. Sci. 1986, 8, 385–389. DOI: https://doi.org/10.1007/BF02744150. DOI: https://doi.org/10.1007/BF02744150
Asadi, M.; Rozati, S. M. Mater. Sci. Pol. 2017, 35, 355–361. DOI: https://doi.org/10.1515/msp-2017-0054. DOI: https://doi.org/10.1515/msp-2017-0054
Lizama-Tzec, F. I.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Gómez-Espinoza, V. H.; Santos-González, I.; Cetina-Dorantes, M.; Vega-Poot, A. G.; García-Valladares, O.; Oskam, G. Sol. Energy, 2019, 194, 302–310. DOI: https://doi.org/10.1016/j.solener.2019.10.066. DOI: https://doi.org/10.1016/j.solener.2019.10.066
Macdonald, G. Thin Solid Films. 1980, 72, 83–87. DOI: https://doi.org/10.1016/0040-6090(80)90561-1
Wang, X.; Lee, E.; Xu, C.; Liu, J. Mater. Today Energy. 2021, 19, 100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609
Pethkar, S.; Takwale, M. G.; Agashe, C.; Bhide, V. G. Sol. Energy Mater. Sol. Cells 1993, 31, 109–117DOI: https://doi.org/10.1016/0927-0248(93)90044-4. DOI: https://doi.org/10.1016/0927-0248(93)90044-4
Geetha Priyadarshini, B.; Aich, S.; Chakraborty, M. J. Mater. Sci. 2011, 46, 2860–2873. DOI: https://doi.org/10.1007/s10853-010-5160-6. DOI: https://doi.org/10.1007/s10853-010-5160-6
Müller, S.; Giovannetti, F.; Reineke-Koch, R.; Kastner, O.; Hafner, B. Sol. Energy. 2019, 188, 865–874. DOI: https://doi.org/10.1016/j.solener.2019.06.064. DOI: https://doi.org/10.1016/j.solener.2019.06.064
Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. Renew. Energy. 2012, 39, 293–298. DOI: https://doi.org/10.1016/j.renene.2011.08.056. DOI: https://doi.org/10.1016/j.renene.2011.08.056
Moss, R. W.; Henshall, P.; Arya, F.; Shire, G. S. F.; Eames, P. C.; Hyde, T. Sol. Energy. 2018, 164, 109–118. DOI: https://doi.org/10.1016/j.solener.2018.02.004. DOI: https://doi.org/10.1016/j.solener.2018.02.004
Sakhaei, S. A.; Valipour, M. S. J. Therm. Anal. Calorim. 2020, 140, 1597–1610. DOI: https://doi.org/10.1007/s10973-019-09148-x. DOI: https://doi.org/10.1007/s10973-019-09148-x
Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Nat. 2023, 613, 60-65. DOI: https://doi.org/10.1038/s41586-022-05460-z. DOI: https://doi.org/10.1038/s41586-022-05460-z
Pérez-González, M.; Tomás, S. A.; Santoyo-Salazar, J.; Gallardo-Hernández, S.; Tellez-Cruz, M. M.; Solorza-Feria, O. J. Alloys Compd. 2019, 779, 908–917.DOI: https://doi.org/10.1016/J.JALLCOM.2018.11.302. DOI: https://doi.org/10.1016/j.jallcom.2018.11.302
Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087–4108. DOI: https://doi.org/10.1002/adma.200803827. DOI: https://doi.org/10.1002/adma.200803827
Natsume, Y.; Sakata, H. Thin Solid Films. 2000, 372, 30–36. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7
Ramírez-Ortega, D.; Meléndez, A. M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Electrochim. Acta. 2014, 140, 541–549. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2014.06.060. DOI: https://doi.org/10.1016/j.electacta.2014.06.060
Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. Mater. Chem. Phys. 1992, 32, 141–152. DOI: https://doi.org/10.1016/0254-0584(92)90270-I. DOI: https://doi.org/10.1016/0254-0584(92)90270-I
Chen, Z.; Tang, Y.; Zhang, L.; Luo, L. Electrochim. Acta. 2006, 51, 5870–5875. DOI: https://doi.org/10.1016/J.ELECTACTA.2006.03.026. DOI: https://doi.org/10.1016/j.electacta.2006.03.026
Canava, B.; Lincot, D. J. Appl. Electrochem. 2000, 30, 711–716. DOI: https://doi.org/10.1023/A:1003857026200
Yu, J.; Yu, X. Environ. Sci. Technol. 2008, 42, 4902–4907. DOI: https://doi.org/10.1021/ES800036N/SUPPL_FILE/ES800036N-FILE003.PDF. DOI: https://doi.org/10.1021/es800036n
Pandey, P.; Kurchania, R.; Haque, F. Z. Optik (Stuttg). 2015, 126, 301–303. DOI: https://doi.org/10.1016/J.IJLEO.2014.08.160. DOI: https://doi.org/10.1016/j.ijleo.2014.08.160
Kolodziejczak-Radzimska, A.; Jesionowski, T. Mater. 2014, 7, 2833-2881. DOI: https://doi.org/10.3390/MA7042833. DOI: https://doi.org/10.3390/ma7042833
Maldonado, M.; Vega-Pérez, J.; Solorza-Feria, Mater. Sci. Eng. B. 2010, 174, 42–45. DOI: https://doi.org/10.1016/J.MSEB.2010.03.074. DOI: https://doi.org/10.1016/j.mseb.2010.03.074
Maldonado, A.; Asomoza, R.; Cañetas-Ortega, J.; Zironi, E. P.; Hernández, R.; Patiño, R.; Solorza-Feria, O. Sol. Energy Mater. Sol. Cells. 1999, 57, 331–344. DOI: https://doi.org/https://doi.org/10.1016/S0927-0248(98)00170-6. DOI: https://doi.org/10.1016/S0927-0248(98)00170-6
Ortiz-Aparicio, J. L.; Meas, Y.; Chapman, T. W.; Trejo, G.; Ortega, R.; Chainet, E. J. Appl. Electrochem. 2015, 45, 67–78. DOI: https://doi.org/10.1007/S10800-014 07779/FIGURES/6. DOI: https://doi.org/10.1007/s10800-014-0777-9
Rodríguez-Pérez, M.; Canto-Aguilar, E. J.; García-Rodríguez, R.; De Denko, A. T.; Oskam, G.; Osterloh, F. E. J. Phys. Chem. C. 2018, 122, 2582–2588. DOI: https://doi.org/10.1021/ACS.JPCC.7B11727/SUPPL_FILE/JP7B11727_SI_001.PDF. DOI: https://doi.org/10.1021/acs.jpcc.7b11727
Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta. 2007, 52, 3686–3696. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2006.10.042. DOI: https://doi.org/10.1016/j.electacta.2006.10.042
Yoshida, T.; Komatsu, D.; Shimokawa, N.; Minoura, H. Thin Solid Films. 2004, 451, 166–169. DOI: https://doi.org/10.1016/j.tsf.2003.10.097. DOI: https://doi.org/10.1016/j.tsf.2003.10.097
Chang, G. J.; Lin, S. Y.; Wu, J. J. Nanoscale. 2014, 6, 1329–1334. DOI: https://doi.org/10.1039/c3nr05267b. DOI: https://doi.org/10.1039/C3NR05267B
Zi, M.; Zhu, M.; Chen, L.; Wei, H.; Yang, X.; Cao, B. Ceram. Int. 2014, 40, 7965–7970. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146
Nunes, V. F.; Souza, A. P. S.; Lima, F.; Oliveira, G.; Freire, F. N.; Almeida, A. F. Mater. Res. 2018, 21, 1–8. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2017-0990. DOI: https://doi.org/10.1590/1980-5373-mr-2017-0990
Lima, F. A. S.; Vasconcelos, I. F.; Lira-Cantu, M. Ceram. Int. 2015, 41, 9314–9320. DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2015.03.271. DOI: https://doi.org/10.1016/j.ceramint.2015.03.271
Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T.; Minoura, H. Solid State Ionics. 2002, 151, 19–27. DOI: https://doi.org/https://doi.org/10.1016/S0167-2738(02)00599-4. DOI: https://doi.org/10.1016/S0167-2738(02)00599-4
Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V. Opt. Mater. 2018, 78, 325–334. DOI: https://doi.org/https://doi.org/10.1016/j.optmat.2018.02.040. DOI: https://doi.org/10.1016/j.optmat.2018.02.040
Marimuthu, T.; Anandhan, ·N; Thangamuthu, ·R; Surya, ·S. J. Mater. Sci. Mater. Electron. 2018, 29, 12830–12841. DOI: https://doi.org/10.1007/s10854-018-9402-8. DOI: https://doi.org/10.1007/s10854-018-9402-8
Linn, Y.; Yang, J.; Meng, Y. Ceram. Int. 2013, 39, 5049–5052. DOI: https://doi.org/10.1016/j.ceramint.2012.11.103
Şişman, İ.; Can, M.; Ergezen, B.; Biçer, M. RSC Adv. 2015, 5, 73692–73698. DOI: https://doi.org/10.1039/C5RA13623G. DOI: https://doi.org/10.1039/C5RA13623G
Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C. Prog. Photovoltaics Res. Appl. 2014, 22, 440–451. DOI: https://doi.org/https://doi.org/10.1002/pip.2288. DOI: https://doi.org/10.1002/pip.2288
Canto-Aguilar, E. J.; González-Flores, C. A.; Peralta-Domínguez, D.; Andres-Castán, J. M.; Demadrille, R.; Rodríguez-Pérez, M.; Oskam, G. J. Electrochem. Soc. 2022, 169, 42504. DOI: https://doi.org/10.1149/1945-7111/ac62c8. DOI: https://doi.org/10.1149/1945-7111/ac62c8
Minoura, H.; Yoshida, T. Electrochemistry. 2008, 76, 109–117. DOI: https://doi.org/10.5796/electrochemistry.76.109. DOI: https://doi.org/10.5796/electrochemistry.76.109
Canto-Aguilar, E. J.; Rodríguez-Pérez, M.; García-Rodríguez, R.; Lizama-Tzec, F. I.; De Denko, A. T.; Osterloh, F. E.; Oskam, G. Electrochim. Acta. 2017, 258, 396–404. DOI: https://doi.org/10.1016/J.ELECTACTA.2017.11.075. DOI: https://doi.org/10.1016/j.electacta.2017.11.075
Bittner, F.; Oekermann, T.; Wark, M. Materials. 2018, 11, 232. DOI: https://doi.org/10.3390/ma11020232. DOI: https://doi.org/10.3390/ma11020232
Omar, A.; Abdullah, H. Renew. Sustain. Energy Rev. 2014, 31, 149–157. DOI: https://doi.org/10.1016/j.rser.2013.11.031. DOI: https://doi.org/10.1016/j.rser.2013.11.031
Sarker, S.; Seo, H. W.; Kim, D. M. J. Power Sources. 2014, 248, 739–744. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101
Vega-Poot, A. G.; Macias-Montero, M.; Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Oskam, G.; Anta, J. A. Energy Environ. Focus. 2013, 2, 270–276. DOI: https://doi.org/10.1166/eef.2013.1062. DOI: https://doi.org/10.1166/eef.2013.1062
Pourjafari, D.; Oskam, G. Nanomater. Sol. Cell Appl. 2019, 145-204. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0
Guillén, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2011, 115, 22622–22632. DOI: https://doi.org/10.1021/jp206698t
Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562. DOI: https://doi.org/10.1021/ja805850q. DOI: https://doi.org/10.1021/ja805850q
Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360–5364. DOI: https://doi.org/10.1039/b310907k. DOI: https://doi.org/10.1039/b310907k
Vega-Poot, A. G.; Macías-Montero, M.; Idígoras, J.; Borrás, A.; Barranco, A.; Gonzalez-Elipe, A. R.; Lizama-Tzec, F. I.; Oskam, G.; Anta, J. A. ChemPhysChem. 2014, 15, 1088–1097. DOI: https://doi.org/10.1002/cphc.201301068. DOI: https://doi.org/10.1002/cphc.201301068
Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H. Superlattices Microstruct. 2016, 96, 82–94. DOI: https://doi.org/10.1016/j.spmi.2016.05.012. DOI: https://doi.org/10.1016/j.spmi.2016.05.012
Bisquert, J. J. Phys. Chem. B. 2002, 106, 325–333. DOI: https://doi.org/10.1021/jp011941g. DOI: https://doi.org/10.1021/jp011941g
Mohammadpour, R.; Zad, A. I.; Hagfeldt, A.; Boschloo, G. ChemPhysChem. 2010, 11, 2140–2145. DOI: https://doi.org/10.1002/cphc.201000125. DOI: https://doi.org/10.1002/cphc.201000125
Lee, K. M.; Lee, E. S.; Yoo, B.; Shin, D. H. Electrochim. Acta. 2013, 109, 181–186. DOI: https://doi.org/10.1016/j.electacta.2013.07.055. DOI: https://doi.org/10.1016/j.electacta.2013.07.055
Wang, H.; Wei, W.; Hu, Y. H. J. Mater. Chem. A. 2013, 1, 6622–6628. DOI: https://doi.org/10.1039/C3TA10892A. DOI: https://doi.org/10.1039/c3ta10892a
Pauporté, T.; Magne, C. Thin Solid Films. 2014, 560, 20–26. DOI: https://doi.org/10.1016/j.tsf.2013.11.121. DOI: https://doi.org/10.1016/j.tsf.2013.11.121
Lizama-Tzec, F. I.; García-Rodríguez, R.; Rodríguez-Gattorno, G.; Canto-Aguilar, E. J.; Vega-Poot, A. G.; Heredia-Cervera, B. E.; Villanueva-Cab, J.; Morales-Flores, N.; Pal, U.; Oskam, G. RSC Adv. 2016, 6, 37424–37433. DOI: https://doi.org/10.1039/c5ra25618f. DOI: https://doi.org/10.1039/C5RA25618F
Pérez-Hernández, G.; Vega-Poot, A.; Pérez-Juárez, I.; Camacho, J. M.; Arés, O.; Rejón, V.; Peña, J. L.; Oskam, G. Sol. Energy Mater. Sol. Cells. 2012, 100, 21–26. DOI: https://doi.org/10.1016/j.solmat.2011.05.012. DOI: https://doi.org/10.1016/j.solmat.2011.05.012


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Francisco Ivan Lizama-Tzec, Manuel Rodríguez-Pérez, Alberto Vega-Poot, Dallely Melissa Herrera-Zamora, Manuel Alejandro Estrella-Gutiérrez, Esdras Canto-Aguilar, Marco Cetina-Dorantes, Gerko Oskam

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
