Electrochemical Oxidation Using Parallel Plate Flow Reactors as an Alternative Technique to Treat Single and Trichromy Dye Effluents

Authors

  • Maiara B. Ferreira Federal University of Rio Grande do Norte
  • Elaine Cristina M. de Moura Santos Federal University of Rio Grande do Norte
  • José H. Oliveira Nascimento Federal University of Rio Grande do Norte
  • Felipe M. Fontes Galvão Federal University of Rio Grande do Norte
  • Elisama V. dos Santos Federal University of Rio Grande do Norte
  • José Eudes Lima Santos Federal University of Rio Grande do Norte
  • Patricio J. Espinoza-Montero Pontificia Universidad Católica del Ecuador
  • Carlos Alberto Martínez-Huitle Federal University of Rio Grande do Norte

DOI:

https://doi.org/10.29356/jmcs.v67i4.2028

Keywords:

Electrochemical oxidation, real textile effluents, electrocatalyst material, decolourization chemical oxygen demand, dissolved oxygen, turbidity

Abstract

Abstract. Electrochemical oxidation (EO) has been investigated as an alternative treatment technique for the remediation of real textile effluents containing a single dye and a trichromy of Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) dyes, using a parallel plate flow reactor equipped with Ti/Pt or Ti/Pt-Sn-Sb electrocatalytic materials and Ti as cathode. The influence of the anode material and applied current densities on decolourization, organic matter decrease, cell potential and energy consumption during EO was examined. Higher color removal was achieved with Ti/Pt-Sn-Sb in all treated effluents compared to Ti/Pt at all electrolysis times, due to high oxidant production, especially hydroxyl radicals on their surface. Polymer film formation on the anode surface inhibited chemical oxygen demand (COD) removal during the treatment of a single effluent containing RY 3RS and RR-RR Gran dyes with either anode, whereas COD removal efficiencies of 13.93 % and 30.03 %, and 54.74 % and 74.48 % were obtained for Ti/Pt and Ti/Pt-Sn-Sb, respectively, in treating trichromy effluent after 240 min of electrolysis. Lower energy consumption was required by Ti/Pt-Sn-Sb compared to the Ti/Pt anode. In most of the trials studied, EO enhanced dissolved oxygen (DO) and reduced effluent turbidity, making it safe for disposal in the environment.

 

Resumen. La oxidación electroquímica (EO) se ha investigado como una técnica de tratamiento alternativa para la remediación de efluentes textiles reales que contienen un solo tinte y una tricromía de Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) y Navy Blue CL -R (NB CL-R), utilizando un reactor de flujo de placas paralelas equipado con materiales electrocatalíticos Ti/Pt o Ti/Pt-Sn-Sb y Ti como cátodo. Se examinó la influencia del material del ánodo y las densidades de corriente aplicadas sobre la decoloración, la reducción de materia orgánica, el potencial de celda y el consumo de energía durante la EO. Se logró una mayor remoción de color con Ti/Pt-Sn-Sb en todos los efluentes tratados en comparación con Ti/Pt en todos los tiempos de electrólisis, debido a la alta producción de oxidantes, especialmente radicales hidroxilos en su superficie. La formación de una película de polímero en la superficie del ánodo inhibió la eliminación de la demanda química de oxígeno (DQO) durante el tratamiento de un solo efluente que contenía colorantes RY 3RS y RR-RR Gran con cualquiera de los ánodos, mientras que las eficiencias de eliminación de DQO del 13,93 % y 30,03 %, y del 54,74 % y Se obtuvo 74,48 % para Ti/Pt y Ti/Pt-Sn-Sb, respectivamente, en el tratamiento de efluentes de tricromía después de 240 min de electrólisis. El Ti/Pt-Sn-Sb requería un menor consumo de energía en comparación con el ánodo de Ti/Pt. En la mayoría de los ensayos estudiados, el EO mejoró el oxígeno disuelto (OD) y redujo la turbidez del efluente, haciéndolo seguro para su eliminación en el medio ambiente.

Downloads

Download data is not yet available.

Author Biographies

Maiara B. Ferreira, Federal University of Rio Grande do Norte

Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry

Elaine Cristina M. de Moura Santos, Federal University of Rio Grande do Norte

Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry

José H. Oliveira Nascimento, Federal University of Rio Grande do Norte

Department of Textile Engineering

Felipe M. Fontes Galvão, Federal University of Rio Grande do Norte

Department of Textile Engineering

Elisama V. dos Santos, Federal University of Rio Grande do Norte

Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry

José Eudes Lima Santos, Federal University of Rio Grande do Norte

Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry

Patricio J. Espinoza-Montero, Pontificia Universidad Católica del Ecuador

Escuela de Ciencias Químicas

Carlos Alberto Martínez-Huitle, Federal University of Rio Grande do Norte

Renewable Energies and Environmental Sustainability Research Group, Institute of Chemistry

References

Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O. Appl. Catal. B. 2023, 328, 122430. DOI: https://doi.org/10.1016/J.APCATB.2023.122430. DOI: https://doi.org/10.1016/j.apcatb.2023.122430

Martínez-Huitle, C. A.; Panizza, M. Curr. Opin. Electrochem. 2018, 11, 62–71. DOI: https://doi.org/10.1016/j.coelec.2018.07.010. DOI: https://doi.org/10.1016/j.coelec.2018.07.010

Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O. Chem. Rev. 2015, 115, 13362–13407. DOI: https://doi.org/10.1021/acs.chemrev.5b00361. DOI: https://doi.org/10.1021/acs.chemrev.5b00361

Martínez-Huitle, C. A.; Scialdone, O.; Rodrigo, M. A., in: Electrochemical Water and Wastewater Treatment; Ed.; Elsevier: USA, 2018. DOI: https://doi.org/10.1016/C2016-0-04297-3. DOI: https://doi.org/10.1016/C2016-0-04297-3

Espinoza-Montero, P. J.; Martínez-Huitle, C. A.; Loor-Urgilés, L. D. J. Clean. Prod. 2023, 401, 136722. DOI: https://doi.org/10.1016/J.JCLEPRO.2023.136722. DOI: https://doi.org/10.1016/j.jclepro.2023.136722

Panizza, M.; Cerisola, G. Appl. Catal. B. 2007, 75, 95–101. DOI: https://doi.org/10.1016/J.APCATB.2007.04.001. DOI: https://doi.org/10.1016/j.apcatb.2007.04.001

Panizza, M.; Cerisola, G. Chem. Rev. 2009, 109, 6541–6569. DOI: https://doi.org/10.1021/cr9001319. DOI: https://doi.org/10.1021/cr9001319

Ganiyu, S. O.; Martínez-Huitle, C. A.; Oturan, M. A. Curr. Opin. Electrochem. 2021, 27. DOI: https://doi.org/10.1016/j.coelec.2020.100678. DOI: https://doi.org/10.1016/j.coelec.2020.100678

Espinoza-Montero, P. J.; Alulema-Pullupaxi, P.; Frontana-Uribe, B. A.; Barrera-Diaz, C. E. Curr. Opin. Solid. State Mater. Sci. 2022, 2, 100988. DOI: https://doi.org/10.1016/J.COSSMS.2022.100988. DOI: https://doi.org/10.1016/j.cossms.2022.100988

Brillas, E. Chemosphere. 2020, 250, 126198. DOI: https://doi.org/10.1016/j.chemosphere.2020.126198. DOI: https://doi.org/10.1016/j.chemosphere.2020.126198

Yang, N.; Yu, S.; MacPherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157–204. DOI: https://doi.org/10.1039/c7cs00757d. DOI: https://doi.org/10.1039/C7CS00757D

de Oliveira Silva, K. N.; Rodrigo, M. A.; dos Santos, E. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100962. DOI: https://doi.org/10.1016/J.COSSMS.2021.100962. DOI: https://doi.org/10.1016/j.cossms.2021.100962

Oliveira, H. L.; Barros, T. M.; Santos, J. E. L.; Gondim, A. D.; Quiroz, M. A.; Martínez-Huitle, C. A.; dos Santos, E. V. Electrochem. Commun. 2023, 154, 107553. DOI: https://doi.org/10.1016/j.elecom.2023.107553. DOI: https://doi.org/10.1016/j.elecom.2023.107553

Brillas, E. J. Mex. Chem. Soc. 2014, 58, 239–255. DOI: https://doi.org/10.29356/jmcs.v58i3.131. DOI: https://doi.org/10.29356/jmcs.v58i3.131

dos Santos, E. V.; Martínez-Huitle, C. A.; Rodrigo, M. A. Curr. Opin. Electrochem. 2023, 101267. DOI: https://doi.org/10.1016/J.COELEC.2023.101267. DOI: https://doi.org/10.1016/j.coelec.2023.101267

Sigcha-Pallo, C.; Peralta-Hernández, J. M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P. J. Environ. Res. 2022, 212, 113362. DOI: https://doi.org/10.1016/J.ENVRES.2022.113362. DOI: https://doi.org/10.1016/j.envres.2022.113362

Carrera-Cevallos, J. V.; Prato-Garcia, D.; Espinoza-Montero, P. J.; Vasquez-Medrano, R. Water Air Soil Pollut. 2021, 232, 1–15. DOI: https://doi.org/10.1007/S11270-020-04941-Z/TABLES/2. DOI: https://doi.org/10.1007/s11270-020-04941-z

Bravo-Yumi, N.; Espinoza-Montero, P.; Picos-Benítez, A.; Navarro-Mendoza, R.; Brillas, E.; Peralta-Hernández, J. M. Electrochim. Acta. 2020, 358, 136904. DOI: https://doi.org/10.1016/J.ELECTACTA.2020.136904. DOI: https://doi.org/10.1016/j.electacta.2020.136904

Divyapriya, G.; Nidheesh, P. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100921. DOI: https://doi.org/10.1016/J.COSSMS.2021.100921. DOI: https://doi.org/10.1016/j.cossms.2021.100921

Pointer Malpass, G. R.; de Jesus Motheo, A. Curr. Opin. Electrochem. 2021, 27, 100689. DOI: https://doi.org/10.1016/J.COELEC.2021.100689. DOI: https://doi.org/10.1016/j.coelec.2021.100689

Ganiyu, S. O.; dos Santos, E. V.; Martínez-Huitle, C. A.; Waldvogel, S. R. Curr. Opin. Electrochem. 2022, 32, 100903. DOI: https://doi.org/10.1016/J.COELEC.2021.100903. DOI: https://doi.org/10.1016/j.coelec.2021.100903

Rodríguez-Narváez, O. M.; Picos, A. R.; Bravo-Yumi, N.; Pacheco-Alvarez, M.; Martínez-Huitle, C. A.; Peralta-Hernández, J. M. Curr. Opin. Electrochem. 2021, 29, 100806. DOI: https://doi.org/10.1016/J.COELEC.2021.100806. DOI: https://doi.org/10.1016/j.coelec.2021.100806

Clematis, D.; Panizza, M. Curr. Opin. Electrochem. 2021, 26, 100665. DOI: https://doi.org/10.1016/j.coelec.2020.100665. DOI: https://doi.org/10.1016/j.coelec.2020.100665

Brillas, E.; Martínez-Huitle, C. A. Appl. Catal. B. 2015, 166–167, 603–643. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016

Viana, D. F.; Salazar-Banda, G. R.; Leite, M. S. Sep. Sci. Technol. (Philadelphia) 2018, 53, 2647–2661. DOI: https://doi.org/10.1080/01496395.2018.1463264. DOI: https://doi.org/10.1080/01496395.2018.1463264

Candia-Onfray, C.; Thiam, A.; Salazar, C.; Martinez-Huitle, C. A.; Salazar, R. J. Electrochem. Soc. 2017, 164, E440–E447. DOI: https://doi.org/10.1149/2.1101713jes. DOI: https://doi.org/10.1149/2.1101713jes

Moura, D. C. De; Quiroz, M. A.; Silva, D. R. Da; Salazar, R.; Martínez-Huitle, C. A. Environ. Nanotechnol. Monit. Manag. 2016, 5, 13–20. DOI: https://doi.org/10.1016/j.enmm.2015.11.001. DOI: https://doi.org/10.1016/j.enmm.2015.11.001

Salazar, R.; Brillas, E.; Sirés, I. Appl. Catal. B. 2012, 115–116, 107–116. DOI: https://doi.org/10.1016/j.apcatb.2011.12.026. DOI: https://doi.org/10.1016/j.apcatb.2011.12.026

Guerra-Tapia, A.; Gonzalez-Guerra, E. Hair Cosmetics: Dyes. Actas Dermosifiliogr. 2014, 105, 833–839. DOI: https://doi.org/10.1016/j.adengl.2014.02.003. DOI: https://doi.org/10.1016/j.adengl.2014.02.003

Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T. Environ. Sci. Pollut. Res. 2013, 2099–2132. DOI: https://doi.org/10.1007/s11356-012-1385-z. DOI: https://doi.org/10.1007/s11356-012-1385-z

Benkhaya, S.; M’ rabet, S.; El Harfi, A. Inorganic Chem. Commun. 2020. DOI: https://doi.org/10.1016/j.inoche.2020.107891. DOI: https://doi.org/10.1016/j.inoche.2020.107891

Orts, F.; del Río, A. I.; Molina, J.; Bonastre, J.; Cases, F. J. Electroanal. Chem. 2018, 808, 387–394. DOI: https://doi.org/10.1016/J.JELECHEM.2017.06.051. DOI: https://doi.org/10.1016/j.jelechem.2017.06.051

Martínez-Huitle, C. A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M. A. J. Braz. Chem. Soc. 2008, 19, 150–156. DOI: https://doi.org/10.1590/S0103-50532008000100021. DOI: https://doi.org/10.1590/S0103-50532008000100021

Ferro, S.; Martínez-Huitle, C. A.; De Battisti, A. J. Appl. Electrochem. 2010, 40, 1779–1787. DOI: https://doi.org/10.1007/s10800-010-0113-y. DOI: https://doi.org/10.1007/s10800-010-0113-y

Martínez-Huitle, C. A.; Ferro, S.; De Battisti, A. Electrochim. Acta. 2004, 49, 4027–4034. DOI: https://doi.org/10.1016/j.electacta.2004.01.083. DOI: https://doi.org/10.1016/j.electacta.2004.01.083

Martínez-Huitle, C. A.; Ferro, S.; De Battisti, A. J. Appl. Electrochem. 2005, 35, 1087–1093. DOI: https://doi.org/10.1007/s10800-005-9003-0. DOI: https://doi.org/10.1007/s10800-005-9003-0

Garcia-Segura, S.; Brillas, E. Water Res. 2011, 45, 2975–2984. DOI: https://doi.org/10.1016/j.watres.2011.03.017. DOI: https://doi.org/10.1016/j.watres.2011.03.017

de Castro, C. M.; Olivi, P.; de Freitas Araújo, K. C.; Barbosa Segundo, I. D.; dos Santos, E. V.; Martínez-Huitle, C. A. Sci. Total Environ. 2023, 855, 158816. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.158816. DOI: https://doi.org/10.1016/j.scitotenv.2022.158816

Fernades Rêgo, F. E.; Sales Solano, A. M.; Da Costa Soares, I. C.; Da Silva, D. R.; Martinez Huitle, C. A.; Panizza, M. J. Environ. Chem. Eng. 2014, 2, 875–880. DOI: https://doi.org/10.1016/j.jece.2014.02.017. DOI: https://doi.org/10.1016/j.jece.2014.02.017

Rocha, J. H. B.; Solano, A. M. S.; Fernandes, N. S.; da Silva, D. R.; Peralta-Hernandez, J. M.; Martínez-Huitle, C. A. Electrocatalysis 2012, 3, 1–12. DOI: https://doi.org/10.1007/s12678-011-0070-1. DOI: https://doi.org/10.1007/s12678-011-0070-1

Ferreira, M. B.; Rocha, J. H. B.; da Silva, D. R.; de Moura, D. C.; de Araújo, D. M.; Martinez-Huitle, C. A. J. Solid State Electrochem. 2016, 20, 2589–2597. DOI: https://doi.org/10.1007/s10008-016-3155-1. DOI: https://doi.org/10.1007/s10008-016-3155-1

Clematis, D.; Cerisola, G.; Panizza, M. Electrochem. Commun. 2017, 75, 21–24. DOI: https://doi.org/10.1016/j.elecom.2016.12.008. DOI: https://doi.org/10.1016/j.elecom.2016.12.008

Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M. A.; Panizza, M. Electrochim. Acta. 2018, 263, 1–7. DOI: https://doi.org/10.1016/j.electacta.2018.01.052. DOI: https://doi.org/10.1016/j.electacta.2018.01.052

Santos, J. E. L.; de Moura, D. C.; da Silva, D. R.; Panizza, M.; Martínez-Huitle, C. A. J. Solid State Electrochem. 2019, 23, 351–360. DOI: https://doi.org/10.1007/s10008-018-4134-5. DOI: https://doi.org/10.1007/s10008-018-4134-5

Rocha, J. H. B.; Gomes, M. M. S.; Santos, E. V. Dos; Moura, E. C. M. De; Silva, D. R. Da; Quiroz, M. A.; Martínez-Huitle, C. A. Electrochim. Acta. 2014, 140, 419–426. DOI: https://doi.org/10.1016/j.electacta.2014.06.030. DOI: https://doi.org/10.1016/j.electacta.2014.06.030

da Costa Soares, I. C.; da Silva, Á. R. L.; de Moura Santos, E. C. M.; dos Santos, E. V.; da Silva, D. R.; Martínez-Huitle, C. A. J. Solid State Electrochem. 2020, 24, 3245–3256. DOI: https://doi.org/10.1007/s10008-020-04813-w. DOI: https://doi.org/10.1007/s10008-020-04813-w

Araújo, C. K. C.; Oliveira, G. R.; Fernandes, N. S.; Zanta, C. L. P. S.; Castro, S. S. L.; da Silva, D. R.; Martínez-Huitle, C. A. Environ. Sci. Pollut. Res. 2014, 21, 9777–9784. DOI: https://doi.org/10.1007/s11356-014-2918-4. DOI: https://doi.org/10.1007/s11356-014-2918-4

Sirés, I.; Oturan, N.; Oturan, M. A. Water Res. 2010, 44, 3109–3120. DOI: https://doi.org/10.1016/j.watres.2010.03.005. DOI: https://doi.org/10.1016/j.watres.2010.03.005

Santos, V.; Morão, A.; Pacheco, M.; Ciríaco, L.; Lopes, A. J. Environ. Eng. Manage. 2008, 18, 193-204.

Rezaei, B.; Soleimany, R.; Ensafi, A. A.; Irannejad, N. J. Environ. Chem. Eng. 2018, 6, 7010–7020. DOI: https://doi.org/10.1016/j.jece.2018.11.008. DOI: https://doi.org/10.1016/j.jece.2018.11.008

Roberto, E. C.; Neto, A. D. O. W.; Martínez-Huitle, C. A.; Fonseca, J. L. C.; Dantas, T. N. D. C.; Gurgel, A. Prog Org Coat 2013, 76, 1308–1315. DOI: https://doi.org/10.1016/j.porgcoat.2013.04.002. DOI: https://doi.org/10.1016/j.porgcoat.2013.04.002

Manojlović, D.; Lelek, K.; Roglić, G.; Zherebtsov, D.; Avdin, V.; Buskina, K.; Sakthidharan, C.; Sapozhnikov, S.; Samodurova, M.; Zakirov, R.; Stanković, D. M. Inter. J. Environ. Sci. Technol. 2020, 17, 2455–2462. DOI: https://doi.org/10.1007/s13762-020-02654-8. DOI: https://doi.org/10.1007/s13762-020-02654-8

Moraes, P. B.; Pelegrino, R. R. L.; Bertazzoli, R. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2007, 42, 2131–2138. DOI: https://doi.org/10.1080/10934520701629591. DOI: https://doi.org/10.1080/10934520701629591

Bilotta, G. S.; Brazier, R. E. Water Res. 2008, 42, 2849–2861. DOI: https://doi.org/10.1016/J.WATRES.2008.03.018. DOI: https://doi.org/10.1016/j.watres.2008.03.018

Ganiyu, S. O.; Martínez-Huitle, C. A. Curr. Opin. Electrochem. 2020, 22, 211–220. DOI: https://doi.org/10.1016/j.coelec.2020.07.007. DOI: https://doi.org/10.1016/j.coelec.2020.07.007

Ganiyu, S. O.; Martínez-Huitle, C. A.; Rodrigo, M. A. Appl. Catal. B 2020, 270, 118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857

×

Downloads

Published

2023-09-19

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Most read articles by the same author(s)

Similar Articles

<< < 38 39 40 41 42 43 44 45 46 > >> 

You may also start an advanced similarity search for this article.

Loading...