Synthesis of Ferrocene Based Schiff Bases Possessing Different Metal Ion Sensing Aptitude and Partaking Antimicrobial Activity

Authors

DOI:

https://doi.org/10.29356/jmcs.v66i3.1677

Keywords:

Unsymmentrical Schiff bases, ferrocene, cation sensors, azomethine, binding attitude, molecular docking

Abstract

Abstract. Schiff bases comprised of highly reactive ferrocene derivatives and normal aromatic moiety have been prepared successfully. Spectral variations noticed in the spectra of newly synthesized receptors for the addition of different metal ions discloses the multi metal ion sensing ability of the prepared sensors. Harmonization of Cu2+ ions with receptor originate as MLCT band in the visible region. Shrewdness made from the data obtained from cyclic voltammetry studies give an idea about the concentration of metal ions needed for effective sensing. In vitro antimicrobial studies and H- bond energy calculation for the interaction between the above sensory materials and proteins of selected microorganisms using molecular docking studies disclosures the antifungal activity of newly prepared materials.

 

Resumen. Bases de Schiff derivadas de grupos ferrocenilos altamente reactivos y grupos aromáticas fueron preparadas exitosamente. La habilidad de los sistemas como sensores para detectar diversos iones metálicos se vió en la variación de las características observadas en sus espectors. La interacción de iones Cu2+ con el receptor produce una banda MLCT en la región visible. Los estudios de voltametría cíclica indican la concentración de los iones metálicos necesaria para una detección eficiente. Estudios antimicrobianos in vitro y cálculos de la energía de puentes de hidrógeno para las interacciones entre los sensores (bases de Schiff) y las proteínas de microorganismos selectos, basados en estudios de acoplamiento molecular, confirman la actividad antifúngica de los nuevos compuestos reportados.

Downloads

Download data is not yet available.

Author Biographies

Saranya Dhasarathan, University of Madras

Research Scholar

PG & Research Department of Chemistry,

Government Arts College for Men 

329, Anna Salai, Nandanam, Chennai-600 035, Tamil Nadu,

India.

Selvaraj Shunmugaperumal, University of Madras

Assistant Professor

PG & Research Department of Chemistry,

Government Arts College for Men 

329, Anna Salai, Nandanam, Chennai-600 035, Tamil Nadu,

India.

Kamatchi Selvaraj P, University of Madras

Assistant Professor

PG & Research Department of Chemistry,

Government Arts College for Men 

329, Anna Salai, Nandanam, Chennai-600 035, Tamil Nadu,

India.

References

Osório, M. V.;, Marques, S. S.; Oliveira, H. M.; Barreiros, L.; Segundo, M. A. J. Food Compos. Anal. 2016, 45, 141–146. DOI: https://doi.org/10.1016/j.jfca.2015.10.007. DOI: https://doi.org/10.1016/j.jfca.2015.10.007

Frank, C. B.; Scott, R. B.; Kiril D. H.; Russell, G. B.; Evan, Taylor, D. A.; Hoffman. Maced. J. Chem. Chem. Eng. 2020, 39, 119–127. DOI: https://doi.org/10.20450/mjcce.2020. DOI: https://doi.org/10.20450/mjcce.2020.2088

Chiu-Hsien, Wu.; Guo-Jhen, J.; Kai-Wei, C.; Zu-Yin ,D.; Yu-Ning, L.; Kuen-Lin, C.; Chien-Chung, J. Sensors. 2018, 18, 163-171. DOI: https://doi.org/10.3390/s18010163. DOI: https://doi.org/10.3390/s18010163

Mayer, M.; Baeumner, A. J. Chem. Rev. 2019, 119, 7996–8027. DOI; https://doi.org/10.1021/acs.chemrev.8b00719. DOI: https://doi.org/10.1021/acs.chemrev.8b00719

Johnson, D. A.; Curtis, M. R.; Wallace, J. K. Chemosensors. 2019, 7, 1–48. DOI: https://doi.org/10.3390/chemosensors7020022. DOI: https://doi.org/10.3390/chemosensors7020022

Vedamalai, M.; Kedaria, D.; Vasita, R.; Moric, S.; Gupta, I. Dalton Trans. 2016, 45, 2700–2708. DOI: https://doi.org/10.1039/C5DT04042F. DOI: https://doi.org/10.1039/C5DT04042F

Qi, X.; Jun, E. J.; Xu, L. J. Org. Chem. 2006, 71, 2881-2884. DOI: https://dx.doi.org/10.1021/jo052542a. DOI: https://doi.org/10.1021/jo052542a

Ingle, A. P.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J. K.; da Silva Martins, L. H.; Rai, M. Biomedical Applications of Metals. 2018, 95–112. DOI: https://doi.org/10.1007/978-3-319-74814-6_4 DOI: https://doi.org/10.1007/978-3-319-74814-6_4

Desguin, B.; Fellner, M.; Riant, O.; Hu, J.; Hausinger, R.P.; Hols, P.; Soumillion, P. J. Biol. Chem. 2018, 293, 12303–12317. DOI: https://doi.org/10.1074/jbc.RA118.003741. DOI: https://doi.org/10.1074/jbc.RA118.003741

Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M. S.; Catalano, A; Int. J. Environ. Res.Public Health. 2020, 17, 679.DOI: https://doi.org /10.3390/ijerph17030679. DOI: https://doi.org/10.3390/ijerph17030679

Zambelli, B.; Uversky, V.N.; Ciurli, S. BBA Proteins Proteom. 2016, 1864, 1714–1731. DOI: https://doi.org/10.1016/j.bbapap.2016.09.008

Mehrdad, R. R.; Mehravar R. R.; Sohrab, K.; Ali-akbar, M. Caspian J. Intern Med .2017, 8,135-145. DOI: https://doi.org/10.22088/cjim.8.3.135

Zhu, W.; Richards, N. G. J. Essays Biochem. 2017, 61, 259–270. DOI: https://doi.org/10.1042/ebc20160070 DOI: https://doi.org/10.1042/EBC20160070

Freeland-Graves, J. H.; Mousa, T. Y.; Kim, S. J. Trace Elem. Med. Biol., 2016, 38, 24–32. DOI: https://doi.org/10.1016/j.jtemb.2016.05.004. DOI: https://doi.org/10.1016/j.jtemb.2016.05.004

Hariharan, G.; Purvaja, R.; Ramesh, R. Environ. Toxicol. 2016, 31, 24–43. DOI: https://doi.org/10.1002/tox.22019. DOI: https://doi.org/10.1002/tox.22019

Wani, A. L.; Ara, A.; Usmani, J. Interdiscip. Toxicol. 2015, 8, 55–64. DOI: https://doi.org/10.1515/intox-2015-0009. DOI: https://doi.org/10.1515/intox-2015-0009

Gidlow, D. A. Occup. Med. 2015, 65, 348–356. DOI: https://doi.org/10.1093/occmed/kqv018. DOI: https://doi.org/10.1093/occmed/kqv018

Dubar, F.; Egan, T. J.; Pradines, B.; Kuter, D.; Ncokazi, K. K.; Forge, D.; Biot, C. ACS Chemical Biology, 2011, 6, 275–287.DOI: https://doi.org/10.1021/cb100322v. DOI: https://doi.org/10.1021/cb100322v

Gupta, S. R.; Mourya, P.; Singh, M. M.; Singh, V. P. J. Organomet. Chem. 2014, 767, 136–143. DOI: https://doi.org/10.1016/j.jorganchem.2014.05. DOI: https://doi.org/10.1016/j.jorganchem.2014.05.038

Hranjec, M.; Starčević, K.; Pavelić, S. K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Eur. J. Med. Chem. 2011, 46, 2274–2279. DOI: https://doi.org/10.1016/j.ejmech.2011.03.008. DOI: https://doi.org/10.1016/j.ejmech.2011.03.008

Mohamed, G. G.; Mahmoud, W. H.; Diab, M. A.; El-Sonbati, A. Z.; Abbas, S. Y. J. Mol. Struct. 2019, 1-15. DOI: https://doi.org/10.1016/j.molstruc.2019.01.00.

Farouk, K., Mohamad, K. C.; Wail Al. Z. ISRN Org. Chem. 2012, 8, 208284. DOI: https://doi.org/10.5402/2012/208284. DOI: https://doi.org/10.5402/2012/208284

Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Food Microbiol.. 2004, 21, 33-42. DOI: https://dx.doi.org/10.1016/s0740-0020(03)00046-7. DOI: https://doi.org/10.1016/S0740-0020(03)00046-7

Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D.S.; Olson, A.J. J. Comput. Chem. 2009, 30, 2785- 2791. DOI: https://dx.doi.org/10.1002/jcc.21256. DOI: https://doi.org/10.1002/jcc.21256

Gryaznova, T. P.; Katsyuba, S. A.; Milyukov, V.A.; Sinyashin, O.G. J. Organomet. Chem. 2010, 695, 2586- 2595. DOI: https://dx.doi.org /10.1016/j.jorganchem.2010.08.031. DOI: https://doi.org/10.1016/j.jorganchem.2010.08.031

Mandewale, M. C.; Bapu,T.; Nivid , Y.; Ram Jadhav A. N.; Yamgar, R. J. Saudi Chem. Soc. 2016, 22, 218-228. DOI: https://dx.doi.org/10.1016/j.jscs.2016.04.003. DOI: https://doi.org/10.1016/j.jscs.2016.04.003

Berna,C Periodcals Eng. Nat. Sci. 2017, 5, 237-244. DOI: https://dx.doi.org/10.21533/pen.v5i2.139 DOI: https://doi.org/10.21533/pen.v5i2.139

Benramdane, R.; Benghanem, F.; Aliourari.; Keraghel, S.; Bouet, G. J. Coord. Chem, 2015, 68, 560-572. DOI: https://dx.doi.org/10.1080/00958972.2014.994514. DOI: https://doi.org/10.1080/00958972.2014.994514

Jinghui, C.; Xiaofeng, M.; Yuhui, Z.; Jiaoyan, L.; Xiangge, Z.; Haifeng, X. Inorg. Chem. 2014, 53, 3210−3219. DOI: https://doi.org/10.1021/ic5000815 DOI: https://doi.org/10.1021/ic5000815

Rampal, P.; Rakesh Kumar, G.; Mohammad, S.; Biswajit, M.; Arvind, M.; Daya Shankar, P. Inorg. Chem. 2012, 51, 298−311. DOI: https://doi.org/10.1021/ic201663m. DOI: https://doi.org/10.1021/ic201663m

Schrage, B. R.; Zhao, Z.; Boika, A.; Ziegler, C. J. J. Org. Chem. 2019, 897, 23–31.DOI: https://doi.org/10.1016/j.jorganchem.2019.06.023. DOI: https://doi.org/10.1016/j.jorganchem.2019.06.023

Kamatchi, P.; Selvaraj, S.; Kandaswamy, M. Polyhendron. 2005, 24, 900-908. DOI: https://doi.org/10.1016/j.poly.2005.02.012. DOI: https://doi.org/10.1016/j.poly.2005.02.012

Kamal, A S.; Kuma.r, S.; Kumar, V.; Mahajan, R.K. Sens. Actuators B. 2015, 22, 370-378. DOI: https://dx.doi.org/10.1016/j.snb.2015.06.147. DOI: https://doi.org/10.1016/j.snb.2015.06.147

John, M. W. S.; Jura, W. H. Can. J. Chem. 1967, 45, 2375-2384. DOI: https://doi.org/10.1139/v67-385. DOI: https://doi.org/10.1139/v67-385

Rebecca, Y. L.; Allen, J. B. J. Phys. Chem. B. 2003, 107, 5036-5042. DOI: https://doi.org/10.1021/jp034578h. DOI: https://doi.org/10.1021/jp034578h

Hassan, A.S.; Askar, A.A.; Nossier, E.S.; Naglah, A.M.; Moustafa, G.O.; Al-Omar, M.A. Molecules. 2019, 24, 3130. DOI: https://doi.org/10.3390/molecules24173130. DOI: https://doi.org/10.3390/molecules24173130

Pozzi, C.; Ferrari, S.; Cortesi, D.; Luciani, R.; Stroud, R.M.; Catalano, A.; Costi, M.P.; Mangani, S. Acta Cryst. D 2012, 68, 1232–1241. DOI: https://doi.org/10.1107/S0907444912026236. DOI: https://doi.org/10.1107/S0907444912026236

Magalhães, T. F. F.; da Silva, C. M.; Dos Santos, L. B. F.; Santos, D. A.; Silva, L. M.; Fuchs, B. B.; Mylonakis, E.; Martins, C. V. B. Lett. Appl. Microbiol. 2020, 71, 490–497. DOI: https://doi.org/10.1111/lam.13356. DOI: https://doi.org/10.1111/lam.13356

Hamad, A.; Chen, Y.; Khan, M. A.; Jamshidi, S.; Saeed, N.; Clifford, M.; Hind, C.; Sutton, J. M.; Rahman, K.M. Microbiol. Open. 2021, 10, e1218. DOI: https://doi.org/10.1002/mbo3.1218. DOI: https://doi.org/10.1002/mbo3.1218

×

Downloads

Published

2022-07-07

Issue

Section

Regular Articles
x

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Loading...