Synthesis, Structural Analysis and Antimicrobial Screening of Mn(II) Complexes of Schiff Bases

Authors

  • V. Gomathi Seethalakshmi Ramaswami College
  • R. Selvameena Seethalakshmi Ramaswami College

DOI:

https://doi.org/10.29356/jmcs.v66i1.1621

Keywords:

Schiff bases, Mn (II) complex, antibacterial, antifungal

Abstract

Abstract. Mn(II) complexes of Schiff bases 4-((3-ethoxy-2-hydroxybenzylidene)amino)-N-(pyridin-2-yl)benzenesulfonamide (HL2) and 4-((3-ethoxy-2-hydroxybenzylidene)amino)-N-(pyrimidin-2- yl)benzenesulfonamide (HL3) were synthesized. The Schiff bases HL2 and HL3 and their complexes were characterized by analytical, conductance, magnetic susceptibility measurements, infrared, ultraviolet-visible, thermal analysis, and EI mass techniques. The spectral data of the complexes have revealed the bidentate complexing nature of the Schiff base ligand through phenoxide ion and azomethine nitrogen atoms. The antibacterial activities of complexes were tested against gram-positive bacterial species Pseudomonas aeruginosa (NCIM 2036) and fungal species Aspergillus niger (NCIM 105) and Mucor sp.  (NCIM 108) by disc diffusion method.

Keywords: Schiff bases; Mn(II) complex; antibacterial; antifungal.

 

Resumen. Los complejos de Mn(II) de las bases de Schiff 4-((3-etoxi-2-hidroxibencilideno)amino)-N-(piridin-2-il)bencenosulfonamida (HL2) y 4-((3-etoxi-2-hidroxibencilideno)amino)-N-(pirimidin-2- il)bencenosulfonamida (HL3) fueron sintetizados. Las bases de Schiff HL2 and HL3 y sus complejos fueron caracterizados por métodos analíticos, conductancia, susceptibilidad magnética, espectroscopia infrarroja y UV-vis, termogravimetría, y espectrometría de masas por impacto enectrónico. Los datos espectroscópicos obtenidos para los complejos corroboraron la coordinación bidentada de los ligantes de base de Schiff a través del ion fenóxido y el átomo de nitrógeno del grupo azometino. La actividad antibacterial de los complejos se evaluó contra cepas bacterianas gram-positivas Pseudomonas aeruginosa (NCIM 2036) y contra especies fúngicas Aspergillus niger (NCIM 105) y Mucor sp.  (NCIM 108) utilizando el método de difusión en disco.

Downloads

Download data is not yet available.

Author Biographies

V. Gomathi, Seethalakshmi Ramaswami College

PG and Research Department of Chemistry.

R. Selvameena, Seethalakshmi Ramaswami College

PG and Research Department of Chemistry.

References

C. Hansch, G.; Sammes, J. B.; Taylor, Comprehensive Medicinal Chemistry, Pergamon Press: Oxford 2. Chapter 7.1, 1990.

Vree, T. H. Clinical Pharmacokinetics of sulfonamides and their metabolities. Karger Basel 1987, 37.

Spinu, C.; Kriza, A. Acta Chim. 2000, 47, 179-185. DOI: https://doi.org/10.1023/A:1014014631732

Qu, Y.; Wang, C.; Wu, Y. C.; Zhao, K.; Wu, H. L. J. Appl. Spectrosc. 2000, 87, 429-436. DOI: https://doi.org/10.1007/s10812-020-01018-x

Ramesh, M.; Chandrasekhar, K.B.; Reddy Hussain, K. Indian J. Chem A. 2000, 39, 1337-1339.

Kaczmarek, M. T.; Jastrz?b, R.; Ho?derna-K?dzia, E.; Radecka-Paryzek, W. Inorg. Chim. Acta. 2009, 362, 3127-3133. DOI: https://doi.org/10.1016/j.ica.2009.02.012

Gomathi, V.; Selvameena, R.; Subbalakshmi, R.; Valarmathy, G. OJC. 2013, 29, 533-538. DOI: https://doi.org/10.13005/ojc/290220

Gull, P.; Hashmi, A. A. J. Braz. Chem. Soc. 2015, 26, 1331-1337.

Valarmathy, G.; Subbalakshmi, R.; Selvameena, R.; Gomathi, V. OJC. 2012, 29, 315-320.

Rama, I.; Usha, V. Asian J. Chem. 2013, 25, 3225-3228. DOI: https://doi.org/10.14233/ajchem.2013.13596

Ramakrishna Reddy, K.; Madhusudan, K. N.; Reddy, R.; Mahindra, K. Indian J. Chem Sec A. 2006, 45, 377-380.

Gomathi, V.; Selvameena, R. Main Group Chem. 2013, 12, 275-284. DOI: https://doi.org/10.3233/MGC-130107

Gomathi, V.; Selvameena, R. Int. J. Sci. Res. 2013, 2, 24-25. DOI: https://doi.org/10.15373/22778179/MAR2013/9

Gomathi, V.; Selvameena, R. Asian J. Chem. 2013, 25, 2083-2086 DOI: https://doi.org/10.14233/ajchem.2013.13323

Selma, Y. Russ J Gen Chem. 2014, 84, 1819-1222. DOI: https://doi.org/10.1134/S1070363214090308

Ferro, J. R. Low frequency vibrations of inorganic and coordination compound, New York, John Wiley, 1971. DOI: https://doi.org/10.1007/978-1-4684-1809-5

Maurya, R. C.; Chourasia, J.; Sharma, P. Indian J. Chem. 2007, 46, 1594-1604,

Maurya, R. C.; Pandey, A.; Sutradhar, D. Indian J. Chem. 2004, 46, 763-769.

Kavitha, S.; Singh, D. P. Vikas, K. Indian J. Chem Techn. 2017, 24, 534-537.

Halli, M. B.; Vijalaxmi, B. P. Indian J. Chem A. 2011, 50, 664- 668.

Safyah Bakare, B. Polish J. Chem. 2019, 21, 26-34. DOI: https://doi.org/10.2478/pjct-2019-0026

Bodhaei, M. D.; Mohebi, S. J. Chem. Res. 2001, 224-228.

Matin, S. J.; Khojasteh, R. R. Russ J. Gen. Chem. 2015, 85, 1763- 1768. DOI: https://doi.org/10.1134/S1070363215070312

Razieh A.; Mohammad Azarkishv.; Tahereh, S. J. Mex. Chem. Soc. 2014, 58, 173-179.

Vidyavati, R.; Nirdosh, P.; Angadi, S. D.; E- J. Chem. 2008, 5, 577-583. DOI: https://doi.org/10.1155/2008/170631

Maurya, R. C.; Chourasia, J. ; Rajak, D.; Malik, B. A.; Mir, J. M.; Jain, N.; Batalia, S. Arabian J. Chem. 2016, 9, S1084-1089. DOI: https://doi.org/10.1016/j.arabjc.2011.12.012

Lu, K. H.; Kia, Q. H.; Zhan, H. J.; Yuan, H. X.; Ye, C. P.; Su, K. X.; Xu, G.; J. Mol. Catal. A: Chem. 2006, 250, 62–69 DOI: https://doi.org/10.1016/j.molcata.2006.01.055

Karthikeyan, G.; Mohanraj, K.; Elango, K.P.; Girishkumar, K. Russ. J. Coord. Chem. 2006, 32, 380-385. DOI: https://doi.org/10.1134/S1070328406050113

Selvam, P.; Chandramohan, M.; Clercq, E.D.; Myriam, W.; Christophe, P. Eur. J. Pharm. Sci. 2001, 14, 313-318. DOI: https://doi.org/10.1016/S0928-0987(01)00197-X

Raman, N.; Raja. S. J.; Sakthivel, A. J. Coord. Chem. 2009, 62, 691-709. DOI: https://doi.org/10.1080/00958970802326179

Lever, A.B.P., “In Inorganic Electronic Spectroscopy”, 2nd ed, Elsevier, Amsterdam, 1984, 449.

Philip, V.; Suni, V.; Prathapchandra Kurup, M. R. P.; Nethaji, M. Spectrochim. Acta A. 2006, 64, 171-178. DOI: https://doi.org/10.1016/j.saa.2005.07.013

Batra, G.; Mathur, P. Transit. Metal Chem. 1994, 19, 160-165. DOI: https://doi.org/10.1007/BF00161880

Sulekh, C.; Savitha, B.; Rita, N.; Kushal, Q.; Saroj, K.; Sharma, K.; Spectrochim. Acta A., 2013, 113, 16-23.

Li, F.; Feterl, M.; Mulayana, Y.; Warner, J. M.; Collins, J. G.;Keene, F. R. J. Antimicrob. Chemother. 2012, 67, 2686-2695. DOI: https://doi.org/10.1093/jac/dks291

Sharaby, C. M. Spectrochim. Acta A, 2007, 66, 1271–1278. DOI: https://doi.org/10.1016/j.saa.2006.05.030

Naeimi, H.; J. Antimicrob. Chemother Moradian, M. J. Coord Chem. 2010, 63, 450-456.

Revanasiddappa, M.; Suresh, T.; Khasim, S.; Raghavendray, S. C.; Basavaraja, C.; Angadi, S. D. E-J. Chem. 2008, 5, 395–403. DOI: https://doi.org/10.1155/2008/328961

Anjaneyulu, Y.; Rao, P. R. Synth. React. Inorg. Met.-Org. Chem. 1986, 16, 257-261.

Dharmaraj, N.; Viswanathamurthi, P. Natarajan, K. Transit. Matal Chem. 2007, 26, 105. DOI: https://doi.org/10.1023/A:1007132408648

Mahajan, K.; Fahmi, N.; Singh, R. V. Indian J. Chem. 2007, 46, 1221–1225.

El-Sherif, A. A.; Eldebss, T. M. A.; Spectrochim. Acta A. 2011, 79, 1803–1814. DOI: https://doi.org/10.1016/j.saa.2011.05.062

Bagihalli, G. B.; Avaji, P. G.; Patil, S. A.; Badami, P. S. Eur. J. Med. Chem. 2008, 43, 2639–2649. DOI: https://doi.org/10.1016/j.ejmech.2008.02.013

×

Downloads

Published

2021-12-27

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...