A Novel Efficient MPEG-Chitosan/HA Biopolymer for Adsorption of the Anticancer SN-38 Liquid Dispersions: Kinetics, Thermodynamic and Ex-Vivo Release Evaluation

Authors

  • Faezeh Sharifi Semnan University
  • Mansour Jahangiri Semnan University
  • Pedram Ebrahimnejad Mazandaran University of Medical Sciences

DOI:

https://doi.org/10.29356/jmcs.v65i4.1505

Keywords:

Nanoparticles, adsorption, kinetics, thermodynamics, ex-vivo release

Abstract

Abstract. Amongst several drug delivery schemes for perfect drug delivery comprise biocompatibility, selective aiming of cancer cells, low-cost, and safe process of nanoparticle preparation. In this work, a new mPEG-chitosan/HA biopolymer was prepared as adsorbent nanoparticles (mNPs) for an efficient drug delivery system.  The mNPs was synthesized by conjugating poly (ethylene glycol) methyl ether (mPEG) to chitosan and prepared through ionic gelation between mPEG-chitosan and hyaluronic acid (HA). The prepared mNPs were used to adsorption/release of 7-ethyl-10-hydroxycamtothecin (SN-38) from its liquid dispersions. The mNPs adsorbent was characterized by Fourier transforms infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM). The results demonstrated that the adsorption isotherm of SN-38 on mNPs follows Langmuir model, and the adsorption capacity was 346.511 mg g-1. Besides, the pseudo-first order kinetic well fitted the equilibrium data. Further, thermodynamic parameters including ΔH, ΔG and ΔS were calculated which demonstrated that the physical spontaneous adsorption was prevailing. In addition, the ex- vivo release of SN-38 from mNPs were in good agreement with Korsmeyer-Peppas equation indicating the drug release process was governed by diffusion phenomena. The above results revealed that mNPs containing SN-38 was a good candidate for the drug delivery systems.

 

Resumen. Dentro de las diferentes propiedades importantes de los sistemas de liberación de fármacos se encuentran la biocompatibilidad, el ataque selectivo a las células cancerosas, el bajo costo y los procesos adecuados de preparación de nanopartículas. En este trabajo, un nuevo biopolímero de mPEG-chitosan/HA se preparó en la forma de nanopartículas (mNPs) para el uso como un sistema de liberación controlada de fármacos. Las nanopartículas se sintetizaron incorporando el éter metílico de poli(etilenglidol) al quitosano, y se prepararon a través de la gelación iónica entre el mPEG-quitosano y el ácido hialurónico (HA). Las nanopartículas así preparadas se probaron en su efectividad para la absorción y liberación de 7-etil-10-hidroxicamtotecina (SN-38) en forma de dispersiones líquidas. El absorbente hecho a partir de las nanopartículas se caracterizó mediante espectroscopía infrarroja de transformada de Fourier (FT-IR), calorimetría diferencial de barrido (DSC) y microscopía electrónica de barrido (SEM). Se encontró que la isoterma de adsorción de la muestra de nanopartículas conteniendo SN-38 se ajusta al modelo de Langmuir, siendo el valor de la capacidad de adsorción de 346.511 mg g-1. El modelo cinético de seudo primer orden se ajusta adecuadamente a los datos obtenidos al equilibrio. Más aún, los parámetros termodinámicos tales como ΔH, ΔG and ΔS se pudieron calcular, lo que indica que la adsorción física espontánea es el mecanismo que prevalece. Además, los datos de liberación ex- vivo de SN-38 a partir de las nanopartículas se pueden ajustar a la ecuación de Korsmeyer-Peppas, indicando que el proceso de liberación del fármaco está gobernado por un proceso de difusión. Los resultados anteriores indican que el sistema de nanopartículas conteniendo SN-38 es un buen candidato para desarrollar un sistema de liberación controlada de fármacos. 

Downloads

Download data is not yet available.

Author Biographies

Faezeh Sharifi, Semnan University

Faculty of Chemical, Petroleum and Gas Eng.

Mansour Jahangiri, Semnan University

Faculty of Chemical, Petroleum and Gas Eng.

Pedram Ebrahimnejad, Mazandaran University of Medical Sciences

Department of Pharmaceutics, Faculty of Pharmacy.

Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences.

References

Fang, J.-Y.; Hung, C.-F.; Hua, S.-C.; Hwang, T.-L. Ultrasonics. 2009, 49, 39-46 DOI: https://doi.org/10.1016/j.ultras.2008.04.009

Ebrahimnejad, P.; Dinarvand, R.; Sajadi, A., J. Food Drug Anal. 2009, 17.

Einafshar, E.; Asl, A. H.; Nia, A. H.; Mohammadi, M.; Malekzadeh, A.; Ramezani, M. Carbohydr. Polym. 2018, 194, 103-110. DOI: https://doi.org/10.1016/j.carbpol.2018.03.102

Sahoo, N. G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H. K. F.; Li, L.; Tan, L. P. Chem. Commun. 2011, 47, 5235-5237. DOI: https://doi.org/10.1039/c1cc00075f

Mohammady, H.; Dinarvand, R.; Esfandyari Manesh, M.; Ebrahimnejad, P. Nanomed. J. 2016, 3, 159-168.

Yang, Z.; Luo, H.; Cao, Z.; Chen, Y.; Gao, J.; Li, Y.; Jiang, Q.; Xu, R.; Liu, J., Nanoscale. 2016, 8, 11543-11558. DOI: https://doi.org/10.1039/C6NR01749E

England, R. M.; Hare, J. I.; Barnes, J.; Wilson, J.; Smith, A.; Strittmatter, N.; Kemmitt, P. D.; Waring, M. J.; Barry, S. T.; Alexander, C. J. Controlled Release. 2017, 247, 73-85. DOI: https://doi.org/10.1016/j.jconrel.2016.12.034

Lee, S.-Y.; Yang, C.-Y.; Peng, C.-L.; Wei, M.-F.; Chen, K.-C.; Yao, C.-J.; Shieh, M.-J. Biomaterials. 2016, 86, 92-105. DOI: https://doi.org/10.1016/j.biomaterials.2016.01.068

Butler, K. S.; Durfee, P. N.; Theron, C.; Ashley, C. E.; Carnes, E. C.; Brinker, C. J. Small. 2016, 12, 2173-2185. DOI: https://doi.org/10.1002/smll.201502119

Sharifi, F.; Nazir, I.; Asim, M. H.; Jahangiri, M.; Ebrahimnejad, P.; Matuszczak, B.; Bernkop-Schnürch, A. J. Mol. Liq. 2019, 291, 111285. DOI: https://doi.org/10.1016/j.molliq.2019.111285

Toole, B. P. Nat. Rev. Cancer. 2004, 4, 528-539. DOI: https://doi.org/10.1038/nrc1391

Sadeghi Ghadi, Z.; Ebrahimnejad, P. J. Microencapsulation. 2019, 36, 169-179. DOI: https://doi.org/10.1080/02652048.2019.1617360

Dang, J. M.; Leong, K. W. Adv. Drug Delivery Rev. 2006, 58, 487-499. DOI: https://doi.org/10.1016/j.addr.2006.03.001

Al-Qadi, S.; Alatorre-Meda, M.; Zaghloul, E. M.; Taboada, P.; Remunán-López, C., Colloids Surf. 2013, 103, 615-623. DOI: https://doi.org/10.1016/j.colsurfb.2012.11.009

Mir, M.; Ebrahimnejad, P. Nanoscience & Nanotechnology-Asia. 2014, 4, 80-87. DOI: https://doi.org/10.2174/2210681205666150515000224

Dong, Y.; Feng, S.-S. Biomaterials. 2004, 25, 2843-2849. DOI: https://doi.org/10.1016/j.biomaterials.2003.09.055

Venkataraman, S.; Hedrick, J.; Ong, Z. Adv. Drug Delivery Rev. 2011, 63, 1228. DOI: https://doi.org/10.1016/j.addr.2011.06.016

O'neill, V.; Twelves, C. Br. J. Cancer. 2002, 87, 933-937. DOI: https://doi.org/10.1038/sj.bjc.6600591

Dramou, P.; Fizir, M.; Taleb, A.; Itatahine, A.; Dahiru, N. S.; Mehdi, Y. A.; Wei, L.; Zhang, J.; He, H. Carbohydr. Polym. 2018, 197, 117-127. DOI: https://doi.org/10.1016/j.carbpol.2018.05.071

Itatahine, A.; Mehdi, Y. A.; Fizir, M.; Qi, M.; Dramou, P.; He, H. New J. Chem. 2018, 42, 1326-1336. DOI: https://doi.org/10.1039/C7NJ04609J

Kar, K. K. Carbon nanotubes: synthesis, characterization and applications. Research Publishing Service: 2011.

Matsumura, Y. Adv. Drug Delivery Rev. 2008, 60, 899-914. DOI: https://doi.org/10.1016/j.addr.2007.11.010

Chen, K.-J.; Tang, L.; Garcia, M. A.; Wang, H.; Lu, H.; Lin, W.-Y.; Hou, S.; Yin, Q.; Shen, C. K.-F.; Cheng, J. Biomaterials. 2012, 33, 1162-1169. DOI: https://doi.org/10.1016/j.biomaterials.2011.10.044

Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. ACS nano. 2014, 8, 2812-2819. DOI: https://doi.org/10.1021/nn406590q

Chi, Y.; Wang, Z.; Wang, J.; Dong, W.; Xin, P.; Bi, J.; Jiang, T.; Chen, C.-P. Colloid Polym. Sci. 2020, 298, 51-58. DOI: https://doi.org/10.1007/s00396-019-04581-8

Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Biomed. Pharmacother. 2017, 95, 670-678. DOI: https://doi.org/10.1016/j.biopha.2017.08.123

Kulkarni, A. R.; Hukkeri, V. I.; Sung, H. W.; Liang, H. F. Macromol. Biosci. 2005, 5, 925-928. DOI: https://doi.org/10.1002/mabi.200500048

Yang, L.; Gao, S.; Asghar, S.; Liu, G.; Song, J.; Wang, X.; Ping, Q.; Zhang, C.; Xiao, Y. Int. J. Biol. Macromol. 2015, 72, 1391-1401. DOI: https://doi.org/10.1016/j.ijbiomac.2014.10.039

Wu, S.; Zhao, X.; Li, Y.; Du, Q.; Sun, J.; Wang, Y.; Wang, X.; Xia, Y.; Wang, Z.; Xia, L. Materials. 2013, 6, 2026-2042. DOI: https://doi.org/10.3390/ma6052026

Saremi, S.; Atyabi, F.; Akhlaghi, S. P.; Ostad, S. N.; Dinarvand, R. Int. J. Nanomed. 2011, 6, 119. DOI: https://doi.org/10.2147/IJN.S15500

Sun, X.; Zhu, D.; Cai, Y.; Shi, G.; Gao, M.; Zheng, M. Int. J. Nanomed. 2019, 14, 2115. DOI: https://doi.org/10.2147/IJN.S193783

Dada, A.; Olalekan, A.; Olatunya, A.; Dada, O. IOSR J. Appl. Chem. 2012, 3, 38-45.

Sharma, Y.; Srivastava, V.; Upadhyay, S.; Weng, C. Ind. Eng. Chem. Res. 2008, 47, 8095-8100. DOI: https://doi.org/10.1021/ie800831v

Alimohammady, M.; Jahangiri, M.; Kiani, F.; Tahermansouri, H. J. Environ. Chem. Eng. 2017, 5, 3405-3417. DOI: https://doi.org/10.1016/j.jece.2017.06.045

Davodi, B.; Jahangiri, M.; Ghorbani, M. Part. Sci. Technol. 2019, 1-12.

Kumar, V. Arabian J. Chem. 2019, 12, 316-329. DOI: https://doi.org/10.1016/j.arabjc.2016.11.009

Alimohammady, M.; Jahangiri, M.; Kiani, F.; Tahermansouri, H. Res. Chem. Intermed. 2018, 44, 69-92. DOI: https://doi.org/10.1007/s11164-017-3091-4

Khan, T. A.; Chaudhry, S. A.; Ali, I. J. Mol. Liq. 2015, 202, 165-175. DOI: https://doi.org/10.1016/j.molliq.2014.12.021

Anbia, M.; Mohammadi Nejati, F.; Jahangiri, M.; Eskandari, A.; Garshasbi, V. J. Sci., Islamic Repub. Iran. 2015, 26, 213-222.

Hidaka, M.; Yamasaki, K.; Okumura, M.; Ogikubo, T.; Iwakiri, T.; Setoguchi, N.; Nishida, K.; Nagai, K.; Ikenoue, T.; Arimori, K. Cancer Chemother. Pharmacol. 2007, 59, 321-328. DOI: https://doi.org/10.1007/s00280-006-0273-y

Guo, M.; Rong, W.-T.; Hou, J.; Wang, D.-F.; Lu, Y.; Wang, Y.; Yu, S.-Q.; Xu, Q. Nanotechnology. 2013, 24, 245101-245120. DOI: https://doi.org/10.1088/0957-4484/24/24/245101

Prasad, S.; Dangi, J. Artif. Cells, Nanomed., Biotechnol. 2016, 44, 1824-1834. DOI: https://doi.org/10.3109/21691401.2015.1105239

Malek, S. K.; Gabris, M. A.; Jume, B. H.; Baradaran, R.; Aziz, M.; Karim, K. J. B. A.; Nodeh, H. R. Daru, J. Pharm. Sci. 2019, 27, 9-20. DOI: https://doi.org/10.1007/s40199-018-0232-2

Akçay, G.; K?l?nç, E.; Akçay, M. Colloids Surf. A. 2009, 335, 189-193. DOI: https://doi.org/10.1016/j.colsurfa.2008.11.009

Morton III, S. A.; Keffer, D. J.; Counce, R.; DePaoli, D.; Hu, M.-C. J. Colloid Interface Sci. 2004, 270, 229-241. DOI: https://doi.org/10.1016/j.jcis.2003.08.006

Gereli, G.; Seki, Y.; Ku?o?lu, ?. M.; Yurdakoç, K. J. Colloid Interface Sci. 2006, 299, 155-162. DOI: https://doi.org/10.1016/j.jcis.2006.02.012

Karaca, S.; Gürses, A.; Ejder, M.; Aç?ky?ld?z, M. J. Colloid Interface Sci. 2004, 277, 257-263. DOI: https://doi.org/10.1016/j.jcis.2004.04.042

Choi, K. Y.; Min, K. H.; Yoon, H. Y.; Kim, K.; Park, J. H.; Kwon, I. C.; Choi, K.; Jeong, S. Y. Biomaterials. 2011, 32, 1880-1889. DOI: https://doi.org/10.1016/j.biomaterials.2010.11.010

Hussain, Z.; Khan, S.; Imran, M.; Sohail, M.; Shah, S. W. A.; de Matas, M. Drug Delivery Transl. Res. 2019, 9, 721-734. DOI: https://doi.org/10.1007/s13346-019-00631-4

Gouda, R.; Baishya, H.; Qing, Z. J. Dev. Drugs. 2017, 6.

Walters, K. A.; Brain, K. R. Dermatological formulation and transdermal systems. In Dermatological and transdermal formulations, CRC Press, 2002, 337-418. DOI: https://doi.org/10.1201/9780824743239-10

Omidian, H.; Park, K., Introduction to hydrogels. In Biomedical applications of hydrogels handbook, Springer, 2010, 1-16. DOI: https://doi.org/10.1007/978-1-4419-5919-5_1

Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Int. J. Pharm. 1983, 15, 25-35. DOI: https://doi.org/10.1016/0378-5173(83)90064-9

Klech, C. M.; Simonelli, A. P. J. Membr. Sci. 1989, 43, 87-101. DOI: https://doi.org/10.1016/S0376-7388(00)82355-8

Peppas, N. A.; Narasimhan, B. J. Controlled Release. 2014, 190, 75-81. DOI: https://doi.org/10.1016/j.jconrel.2014.06.041

Kosmidis, K.; Argyrakis, P.; Macheras, P. J. Chem. Phys. 2003, 119, 6373-6377. DOI: https://doi.org/10.1063/1.1603731

Yamaura, M.; Camilo, R.; Sampaio, L.; Macedo, M.; Nakamura, M.; Toma, H. J. Magn. Magn. Mater. 2004, 279, 210-217. DOI: https://doi.org/10.1016/j.jmmm.2004.01.094

Agüeros, M.; Zabaleta, V.; Espuelas, S.; Campanero, M.; Irache, J. J. Controlled Release. 2010, 145, 2-8. DOI: https://doi.org/10.1016/j.jconrel.2010.03.012

Yue, X.; Qiao, Y.; Qiao, N.; Guo, S.; Xing, J.; Deng, L.; Xu, J.; Dong, A. Biomacromolecules. 2010, 11, 2306-2312. DOI: https://doi.org/10.1021/bm100410m

Ling, L.; Ismail, M.; Du, Y.; Xia, Q.; He, W.; Yao, C.; Li, X. Mol. Pharmaceutics. 2018, 15, 5479-5492. DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00585

Zhang, Z.; Xu, Y.; Zhao, K.; Zhang, Y.; Chen, W.; Li, X.; Meng, Y.; Yang, D.; Wang, P.; Zhu, J. Med. Res. 2020, 3. DOI: https://doi.org/10.21127/yaoyimr20190008

Gan, M.; Zhang, W.; Wei, S.; Dang, H. Artif. Cells, Nanomed., Biotechnol. 2017, 45, 389-397. DOI: https://doi.org/10.3109/21691401.2016.1167700

Dinarvand, M.; Kiani, M.; Mirzazadeh, F.; Esmaeili, A.; Mirzaie, Z.; Soleimani, M.; Dinarvand, R.; Atyabi, F. Int. J. Biol. Macromol. 2015, 78, 112-121. DOI: https://doi.org/10.1016/j.ijbiomac.2015.03.066

Patil, A.; Nimbalkar, M.; Patil, P.; Chougale, A.; Patil, P. Mater. Today: Proc. 2020, 23, 437-443. DOI: https://doi.org/10.1016/j.matpr.2020.02.064

Chen, D.; Bi, J.; Wu, J.; Kumar, A. J. Inorg. Organomet. Polym. Mater. 2020, 30, 573-579. DOI: https://doi.org/10.1007/s10904-019-01188-y

Karki, N.; Tiwari, H.; Pal, M.; Chaurasia, A.; Bal, R.; Joshi, P.; Sahoo, N. G. Colloids Surf. 2018, 169, 265-272. DOI: https://doi.org/10.1016/j.colsurfb.2018.05.022

×

Downloads

Published

2021-09-23

Issue

Section

Regular Articles
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...