Point-Defect Chemistry on the Polarization Behavior of Niobium Doped Bismuth Titanate

Authors

  • F. Ambriz-Vargas INRS
  • R. Zamorano-Ulloa Instituto Politécnico Nacional
  • A. Romero-Serrano Instituto Politécnico Nacional
  • J. Ortiz-Landeros Instituto Politécnico Nacional
  • J. Crespo-Villegas Instituto Politécnico Nacional
  • D. Ramírez-Rosales Instituto Politécnico Nacional
  • C. Gómez-Yáñez Instituto Politécnico Nacional

DOI:

https://doi.org/10.29356/jmcs.v61i4.462

Keywords:

Ceramics, Dielectric properties, Point defects, Electrical properties.

Abstract

The present work shows the defect chemistry at room temperature of Bi4Ti3O12, emphasizing the effect of point defects on the ferroelectric properties. Electrical measurements of conductivity, dielectric permittivity and dielectric loss as well as structural characterization and Electron Spin Resonance (ESR) were used to deduce the existence of different point defects. Pure and Niobium doped bismuth titanate ceramic were prepared by a conventional solid state reaction technique. Rietveld refinement analysis suggested that niobium atoms occupy the titanium lattice sites and the presence of bismuth vacancies. Electron Spin Resonance measurements showed signals that are associated to iron impurities. The present communication supports the models of compensation mechanisms dominated by free electrons and bismuth vacancies.

Downloads

Download data is not yet available.

Author Biographies

F. Ambriz-Vargas, INRS

Centre Énergie, Matériaux et Télécommunications

R. Zamorano-Ulloa, Instituto Politécnico Nacional

Departamento de Física, ESFM; UPALM

A. Romero-Serrano, Instituto Politécnico Nacional

Departamento de Ingeniería en Metalurgia y Materiales, ESIQIE,UPALM

J. Ortiz-Landeros, Instituto Politécnico Nacional

Departamento de Ingeniería en Metalurgia y Materiales, ESIQIE,UPALM

J. Crespo-Villegas, Instituto Politécnico Nacional

Departamento de Ingeniería en Metalurgia y Materiales, ESIQIE,UPALM

D. Ramírez-Rosales, Instituto Politécnico Nacional

Departamento de Física, ESFM; UPALM

C. Gómez-Yáñez, Instituto Politécnico Nacional

Departamento de Ingeniería en Metalurgia y Materiales, ESIQIE,  UPALM

References

Mikolajick, T.; Dehm, C.; Hartner, W.; Kasko, I.; Kastner, M.J.; Nagel, N.; Moert, M.; Mazure, C.; Microelectronics Reliability 2001, 41, 947-950. DOI: https://doi.org/10.1016/S0026-2714(01)00049-X

Baldi, L.; Bez, R.; Sandhu, G. Solid-State Electronics 2014, 102, 2-11. DOI: https://doi.org/10.1016/j.sse.2014.06.009

Fabian, A.; Gitanjali, K.; Maxime, B., Azza H.; Rafik N.; Andranik, S.; Reji, T.; Carlos G.Marc, A. G.; Andreas, R. ACS Appl. Mater. Interfaces 2017, 9 (15), 13262–13268. DOI: https://doi.org/10.1021/acsami.6b16173

Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S. Rep Prog Phys 2012, 75 (7), 076502. DOI: https://doi.org/10.1088/0034-4885/75/7/076502

Kao, M. C.; Chen, H. Z.; Young, S. L.; Chuang, B. N.; Jiang, W. W.; Song, J. S.; Jhan, S. S.; Chiang, J. L.; Wu, L. T. J. Cryst. Growth 2012, 338 (1), 139-142. DOI: https://doi.org/10.1016/j.jcrysgro.2011.11.033

Kohlstedt, H.; Mustafa, Y.; Gerber, A.; Petraru, A.; Fitsilis, M.; Meyer, R.; Böttger, U.; Waser, R. Microelectron. Eng. 2005, 80, 296-304. DOI: https://doi.org/10.1016/j.mee.2005.04.084

Fabian, A.; Ivan, V.; Thomas, R.; Ruediger, A. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2016, 34 (2), 02M101.

Kang, S. W. R. J. Mater. Sci.: Mater. Electron. 2004, 2004, 231-234. 9. Makarov, A.; Sverdlov, V.; Selberherr, S. Microelectron. Reliab. 2012, 52 (4), 628-634. DOI: https://doi.org/10.1016/j.microrel.2011.10.020

Fabian, A.; Gintanjali, K.; Thomas, R.; Nouar, R.; A. Sarkissian, Carlos, G.; Marc, G.; Ruediger, A. Appl. Phys. Lett. 2017, 110, 093106

Soni, R.; Petraru, A.; Meuffels, P.; Vavra, O.; Ziegler, M.; Kim, S. K.; Jeong, D. S.; Pertsev, N. A.; Kohlstedt, H. Nat Commun 2014, 5, 5414. DOI: https://doi.org/10.1038/ncomms6414

Wu, A.; Soares, M. R.; Miranda Salvado, I. M.; Vilarinho, P. M. Mater. Res. Bull. 2012, 47 (11), 3819-3824. DOI: https://doi.org/10.1016/j.materresbull.2012.04.033

Oliveira, R. C.; Cavalcante, L. S.; Sczancoski, J. C.; Aguiar, E. C.; Espinosa, J. W. M.; Varela, J. A.; Pizani, P. S.; Longo, E. J. Alloys Compd. 2009, 478 (1-2), 661-670. DOI: https://doi.org/10.1016/j.jallcom.2008.11.115

Martin, L. W.; Chu, Y. H.; Ramesh, R. Mater. Sci. Eng. 2010, 68 (4-6), 89-133. DOI: https://doi.org/10.1016/j.mser.2010.03.001

Noguchi, T. G.; Miyayama, M.; Hoshikawa, A.; Kamiyama, T. J Electroceram 2008, 21, 49-54.

Materlik, R.; Künneth, C.; Kersch, A. J. Appl. Phys. 2015, 117 (13), 134109. DOI: https://doi.org/10.1063/1.4916707

Zhang, L.; Chu, R.; Zhao, S.; Li, G.; Yin, Q. Mater. Sci. Eng: B 2005, 116 (1), 99-103. DOI: https://doi.org/10.1016/j.mseb.2004.09.007

Bao, Z.H.; Zhu, J.S.; Wang, J.S. Mater. Lett. 2002, 56, 861– 866. DOI: https://doi.org/10.1515/9783110905953.861

Lee, S.-Y.; Park, B.-O. J. Cryst. Growth 2005, 283 (1-2), 81-86. DOI: https://doi.org/10.1016/j.jcrysgro.2005.04.097

Simões, A. Z.; Aguiar, E. C.; Ries, A.; Longo, E.; Varela, J. A. Mater. Lett. 2007, 61 (2), 588-591. DOI: https://doi.org/10.1016/j.matlet.2006.05.014

Nowotny, M. K.; Nowotny, J. J. Phys. Chem. B 2006, 110, 16283-16291. DOI: https://doi.org/10.1021/jp060622s

Laguta, V. V.; Slipenyuk, A. M.; Bykov, I. P.; Glinchuk, M. D.; Maglione, M.; Michau, D.; Rosa, J.; Jastrabik, L. Appl. Phys. Lett. 2005, 87 (2), 022903. DOI: https://doi.org/10.1063/1.1954900

Laguta, V. V.; Slipenyuk, A. M.; Bykov, I. P.; Glinchuk, M. D.; Maglione, M.; Bilous, A. G.; V?yunov, O. I.; Rosa, J.; Jastrabik, L. J. Appl. Phys. 2005, 97 (7), 073707. DOI: https://doi.org/10.1063/1.1868856

Santos, J. C.; Mir, M.; Mastelaro, V.R.; Hernandes, A.C. J. Eur. Ceram. Soc. 2009, 751–756. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.06.025

Jose, O.; Carlos, G.; Palacios-Romero, C.; Lima, E.; Pfeiffer, H. J Phys Chem A 2012, 116 (12), 3163-71. DOI: https://doi.org/10.1021/jp3006298

Machura, D.; Rymarczyk, J.; Ilczuk, J. Eur. Phys. J.: Spec. Top. 2008, 154 (1), 131-134. DOI: https://doi.org/10.1140/epjst/e2008-00531-4

Jardiel, T.; Caballero, A. C.; Fernández, J. F.; Villegas, M. J. Eur. Ceram. Soc. 2006, 26 (13), 2823-2826. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.05.003

Kim, H. J.; Park, M. H.; Kim, Y. J.; Lee, Y. H.; Jeon, W.; Gwon, T.; Moon, T.; Kim, K. D.; Hwang, C. S. Appl. Phys. Lett. 2014, 105

(19), 192903.

Paredes-Olguín, M.; Lira-Hernández, I. A.; Gómez-Yáñez, C.; Espino-Cortés, F. P. Phys. B 2013, 410, 157-161. DOI: https://doi.org/10.1016/j.physb.2012.11.001

Tao, L. L.; Wang, J. J. Appl. Phys. 2016, 119 (22), 224104. DOI: https://doi.org/10.1063/1.4953642

Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Muller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; Hwang, C. S. Adv Mater 2015, 27 (11), 1811-31. DOI: https://doi.org/10.1002/adma.201404531

Velasco-Davalos, I.; Ambriz-Vargas, F.; Gómez-Yáñez, C.; Thomas, R.; Ruediger, A. J. Alloys Compd. 2016, 667, 268-274. DOI: https://doi.org/10.1016/j.jallcom.2016.01.145

Velasco-Davalos, I.; Ambriz-Vargas, F.; Kolhatkar, G.; Thomas, R.; Ruediger, A. AIP Advances 2016, 6 (6), 065117. DOI: https://doi.org/10.1063/1.4954695

Velasco-Davalos, I. A.; Moretti, M.; Nicklaus, M.; Nauenheim, C.; Li, S.; Nechache, R.; Gomez-Yanez, C.; Ruediger, A. Appl. Phys. A: Mater. Sci. Process. 2013, 115 (3), 1081-1085. DOI: https://doi.org/10.1007/s00339-013-7952-4

Velasco-Davalos, I. A.; Ruediger, A.; Cruz-Rivera, J. J.; Gomez-Yanez, C. J. Alloys Compd. 2013, 581, 56-58. DOI: https://doi.org/10.1016/j.jallcom.2013.06.187

Yoo, Y. W.; Jeon, W.; Lee, W.; An, C. H.; Kim, S. K.; Hwang, C. S. ACS Appl Mater Interfaces 2014, 6 (24), 22474-82. DOI: https://doi.org/10.1021/am506525s

Plutenko, T. A.; V?yunov, O. I.; Belous, A. G. Inorg. Mater. 2012, 48 (12), 1183-1189. DOI: https://doi.org/10.1134/S0020168512120047

Chen, M.; Liu, Z. L.; Wang, Y.; Wang, C. C.; Yang, X. S.; Yao, K. L. Phys. B 2004, 352 (1-4), 61-65. DOI: https://doi.org/10.1016/j.physb.2004.06.055

Chen, X. Q.; Yang, F. J.; Cao, W. Q.; Wang, H.; Yang, C. P.; Wang, D. Y.; Chen, K. Solid State Commun. 2010, 150 (27-28), 1221-1224. DOI: https://doi.org/10.1016/j.ssc.2010.04.002

Cheng, Z. X.; Li, A. H.; Wang, X. L.; Dou, S. X.; Ozawa, K.; Kimura, H.; Zhang, S. J.; Shrout, T. R. J. Appl. Phys. 2008, 103 (7), 07E507. DOI: https://doi.org/10.1063/1.2839325

Shimizu, T.; Yokouchi, T.; Oikawa, T.; Shiraishi, T.; Kiguchi, T.; Akama, A.; Konno, T. J.; Gruverman, A.; Funakubo, H. Appl. Phys. Lett. 2015, 106 (11), 112904. DOI: https://doi.org/10.1063/1.4915336

Noguchi, Y.; Yamamoto, K.; Kitanaka, Y.; Miyayama, M. J. Eur. Ceram. Soc. 2007, 27 (13-15), 4081-4084. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.104

Kolodiazhnyi, T. J. Phys. chem. Solids 2003, 64, 953-960. DOI: https://doi.org/10.1016/S0022-3697(02)00454-7

Chang, Y.; Kingery, W. D. Defects in Ceramics, J. Wiley 1997, 129-130.

Noguchi, Y.; Goto, T.; Miyayama, M.; Hoshikawa, A.; Kamiyama, T. J. Electroceram. 2007, 21 (1-4), 49-54. DOI: https://doi.org/10.1007/s10832-007-9083-9

Chen, M.; Huang, K.-l.; Mei, X.-a.; Huang, C.-q.; Liu, J.; Cai, A.- h. Trans. Nonferrous Met. Soc. China 2009, 19 (1), 138-142. DOI: https://doi.org/10.1016/S1003-6326(08)60241-1

Chiu, H.-C.; Wu, C.-H.; Chi, J.-F.; Chien, F.-T. Microelectron. Reliab. 2014, 54 (6-7), 1282-1287. DOI: https://doi.org/10.1016/j.microrel.2014.03.006

Murugaraj, P. J. Mater. Sci. Lett 1986, 5, 171-173. DOI: https://doi.org/10.1007/BF01672038

Jakes, P.; Erdem, E.; Eichel, R.-A.; Jin, L.; Damjanovic, D. Appl. Phys. Lett. 2011, 98 (7), 072907. DOI: https://doi.org/10.1063/1.3555465

Zhang, Z. H.; Wu, S. Y.; Kuang, M. Q.; Song, B. T. Eur. Phys. J.: Appl. Phys. 2011, 56 (1), 10303. DOI: https://doi.org/10.1051/epjap/2011110229

Eichel, R. A. Phys Chem Chem Phys 2011, 13 (2), 368-84. DOI: https://doi.org/10.1039/B918782K

Shelef, A. J. Catal. 2000, 195, 106-112. DOI: https://doi.org/10.1006/jcat.2000.2976

Issa, M. A.; Dughaish, Z. H. J. Phys. D: Apple. Phys 1984, 17, 2037-2047. DOI: https://doi.org/10.1088/0022-3727/17/10/014

Glinchuk, M. D.; Kornienko, S. M.; Laguta, V. V.; Slipenyuk, A. M.; Bilous, A. G.; V?yunov, O. I.; Yanchevskii, O. Z. J. Mater. Chem. 2000, 10, 941-947. DOI: https://doi.org/10.1039/a909647g

Kornienko, M.; Glinchuk, M. D.; Laguta, V.V.; Belous, A. G.; Yastrabik, L. Phys. Solid State 1999, 41, 1838-1842. DOI: https://doi.org/10.1134/1.1131069

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Loading...