Antimicrobial Effect on Pathogenic Microorganisms and Physicochemical Characterization of Zn-MgO Nanocomposites

Authors

  • Miramontes Escobar Herenia Adilene University of Guadalajara
  • Ruvalcaba-Díaz Betsy Krisel National Technological Institute of Mexico/ Technological Institute of Tepic https://orcid.org/0009-0006-7026-6703
  • Sánchez Burgos Jorge Alberto National Technological Institute of Mexico/ Technological Institute of Tepic
  • Suresh Ghotekar Chettinad Academy of Research and Education
  • Mamoun Fellah ABBES Laghrour-University
  • Pérez-Larios Alejandro University of Guadalajara https://orcid.org/0000-0001-8656-5667

DOI:

https://doi.org/10.29356/jmcs.v70i1.2475

Keywords:

ZnO-MgO Nanocomposites, microwave synthesis, antimicrobial activity

Abstract

Abstract. Zn-MgO nanocomposites have attracted interest due to their antimicrobial potential against pathogens. The antimicrobial activity of ZnO/MgO mixed oxides with different ratios (1 %, 3 %, 5 % w/w) was evaluated against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Salmonella paratyphi A, and Listeria monocytogenes. The nanomaterials were synthesized using the microwave method and characterized by FT-IR, XRD, and SEM, confirming the presence of Zn-O and Mg-O bonds, particle sizes ranging from 20 to 42 nm, and cubic/semiglobular morphologies. The results revealed that the addition of MgO influences the particle size and the MgO ratio used, with 1 % ZM being the most effective treatment. This study contributes to the development of new antimicrobial agents to combat the growing bacterial resistance.

 

Resumen. Los nanocompuestos de Zn-MgO han despertado interés por su potencial antimicrobiano contra patógenos. Se evaluó la actividad antimicrobiana de óxidos mixtos de ZnO/MgO con diferentes relaciones (1 %, 3 %, 5 % w/w) sobre Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Salmonella paratyphi A y Listeria monocytogenes. Los nanomateriales fueron sintetizados mediante el método de microondas y caracterizados por FT-IR, DRX y SEM, confirmando la presencia de enlaces Zn-O y Mg-O, tamaños de partícula entre 20-42 nm y morfologías cúbicas/semiglobulares. Los resultados revelaron que la adición de MgO influye en el tamaño de partícula y la relación de MgO utilizada, siendo el mejor tratamiento ZM 1 %. Este estudio contribuye al desarrollo de nuevos agentes antimicrobianos para combatir la creciente resistencia bacteriana.

Downloads

Download data is not yet available.

Author Biographies

Miramontes Escobar Herenia Adilene, University of Guadalajara

Nanocatalysis Research Laboratory, Department of Engineering, Centro Universitario de los Altos

Ruvalcaba-Díaz Betsy Krisel, National Technological Institute of Mexico/ Technological Institute of Tepic

Food Research Laboratory

Sánchez Burgos Jorge Alberto, National Technological Institute of Mexico/ Technological Institute of Tepic

Food Research Laboratory

Suresh Ghotekar, Chettinad Academy of Research and Education

Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute

Mamoun Fellah, ABBES Laghrour-University

Mechanical Engineering Department,

Pérez-Larios Alejandro, University of Guadalajara

Nanocatalysis Research Laboratory, Department of Engineering, Centro Universitario de los Altos

References

1. Fadl, F. I. A.; Hegazy, D. E.; Maziad, N. A.; Ghobashy, M. M. Int. J. Biol. Macromol. 2023, 250, 126248.

2. Gnanam, S.; Shynu, R. K.; Gajendiran, J.; Karthikeyan, M.; Ramana Ramya, J.; Thennarasu, G. Chem. Phys. Lett. 2024, 857, 141702.

3. Nigam, A.; Saini, S.; Rai, A. K.; Pawar, S. J. Ceram. Int. 2021, 47, 19515–19525.

4. Halfadji, A.; Bennabi, L.; Giannakis, S.; Marrani, A. G.; Bellucci, S. Ceram. Int. 2024, 50, 39097–39108.

5. Elbasuney, S.; El-Sayyad, G. S.; Tantawy, H.; Hashem, A. H. RSC Adv. 2021, 11, 25961–25975.

6. Jin, S. E.; Jin, H. E. Nanomaterials. 2021, 11, 263.

7. Kumar, P.; Saravanan, P.; Baskar, G.; Chitrashalini, S.; Omer, S. N.; Subashini, S.; et al. Inorg. Chem. Commun. 2024, 170, 113443.

8. Garza-Cervantes, J. A.; Escárcega-González, C. E.; Díaz Barriga Castro, E.; Mendiola-Garza, G.; Marichal-Cancino, B. A.; López-Vázquez, M. A.; et al. Int. J. Nanomedicine. 2019, 14, 2557–2571.

9. EL-Moslamy, S. H. Sci. Rep. 2018, 8, 3820.

10. Yang, X.; Wang, D.; Zhou, Q.; Nie, F.; Du, H.; Pang, X.; et al. BMC Microbiol. 2019, 19, 240.

11. Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A. Arch. Toxicol. 2013, 87, 1181–1200.

12. Champagne, C.P.; Ross, R. P.; Saarela, M.; Hansen, K. F.; Charalampopoulos, D. Int. J. Food Microbiol. 2011, 149, 185–193.

13. Christobel, G. J. Int. J. Sci. Res. 2013, 5, No. NOV164755.

14. CH, A.; Rao, K. V.; Chakra, CH. S. J. Nanomed. Nanotechnol. 2015, 6, 06.

15. Kayani, Z. N.; Iqbal, M.; Riaz, S.; Zia, R.; Naseem, S. Mater. Sci.-Pol. 2015, 33, 515–520.

16. Rouchdi, M.; Salmani, E.; Fares, B.; Hassanain, N.; Mzerd, A. Results Phys. 2017, 7, 620–627.

17. Yousefi, R.; Zak, A. K.; Jamali-Sheini, F. Mater. Sci. Semicond. Process. 2013, 16*, 771–777.

18. Dobrucka, R. Int. J. Environ. Anal. Chem. 2021, 101, 2046–2057.

19. Kumar, A.; Pandey, A. K.; Shanker, R.; Dhawan, A. Microorganisms 2012.

20. Al-Bedairy, M.; Alshamsi, H. A. H. Eurasian J. Anal. Chem. 2018, 13, No. 6.

21. Shi, X. H.; Ban, J. J.; Zhang, L.; Sun, Z. P.; Jia, D. Z.; Xu, G. C. RSC Adv. 2017, 7, 16189–16195.

22. Zaidi, B.; Belghit, S.; Ullah, M. S.; Hadjoudja, B.; Guerraoui, A.; Gagui, S.; et al. Metallofiz. Noveishie Tekhnol. 2019, 41, 1121–1126.

23. Kumar, R.; Sharma, A.; Kishore, N. Int. J. Eng. Appl. Manag. Sci. Paradigms 2013, 07.

24. Sankara Reddy, B.; Venkatramana Reddy, S.; Koteeswara Reddy, N. J. Mater. Sci.: Mater. Electron. 2013, 24, 5204–5210.

25. Auger, S.; Henry, C.; Péchaux, C.; Lejal, N.; Zanet, V.; Nikolic, M. V.; et al. Ecotoxicol. Environ. Saf. 2019, 182, 109421.

26. Guan, G.; Zhang, L.; Zhu, J.; Wu, H.; Li, W.; Sun, Q. J. Hazard. Mater. 2021, 402, 123542.

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.

Loading...