Investigation of Structure, Reactivity, and Biological Activity of Thiazole-Containing Compounds: A Computational Study

Authors

  • Selvarengan Paranthaman Kalasalingam Academy of Research and Education https://orcid.org/0000-0002-2008-6636
  • Saranya Gurumoorthy Kalasalingam Academy of Research and Education
  • Karthikeyan Asokan Kalasalingam Academy of Research and Education https://orcid.org/0000-0003-2228-4561
  • Abiram Angamuthu PSG College of Arts and Science

DOI:

https://doi.org/10.29356/jmcs.v70i1.2378

Keywords:

Thiazole, density functional theory, molecular docking, anticancer, anticholinesterase reactivity

Abstract

Abstract. Herein, the structure, stability, reactivity, and biological activity of recently synthesized thiazole-containing compounds are evaluated using density functional theory (DFT), molecular docking, and molecular dynamics (MD) techniques. All the selected thiazole-containing compounds are optimized using DFT (B3LYP/def2-TZVPP) method. The DFT reactivity parameters such as energy gap, chemical hardness, chemical potential, ionization potential, electron affinity, electronegativity, softness, and electrophilicity index are calculated. Our calculations indicate that the thiazole-containing compound M1 shows significant structural stability and reactivity. Our physicochemical and pharmacokinetic studies suggest that the selected thiazole-containing compounds possess a drug-like nature.  The antibacterial, anticancer, anticholinergic, and antifungal activity of the selected thiazole-containing compounds are investigated using molecular docking and dynamics methods.  Our docking studies revealed that M1 shows higher binding affinity with the selected protein targets, which confirms their biological activity. Similarly, M6, M9, and M10 possess lesser binding energy among the selected thiazole-containing compounds. Our MD simulations show that the ligand M1 strongly interacts with the 1M17 protein. shows higher binding affinity with the selected protein targets, which confirms their biological activity. Similarly, M6, M9, and M10 possess lesser binding energy among the selected thiazole-containing compounds. Our MD simulations show that the ligand M1 strongly interacts with the 1M17 protein. This is further evidence that the ligand M1 is a promising candidate for the development of new drugs against deadly pathogens.



Resumen. En este trabajo, se evalúan la estructura, estabilidad, reactividad y actividad biológica de compuestos que contienen tiazol recientemente sintetizados mediante la teoría del funcional de la densidad (DFT), acoplamiento molecular y técnicas de dinámica molecular (MD). Todos los compuestos seleccionados que contienen tiazol se optimizan mediante el método DFT B3LYP/def2-TZVPP. Se calculan los parámetros de reactividad de la DFT, como la brecha de energía, la dureza química, el potencial químico, el potencial de ionización, la afinidad electrónica, la electronegatividad, la suavidad y el índice de electrofilicidad. Nuestros cálculos indican que el compuesto M1, que contiene tiazol, muestra una estabilidad estructural y una reactividad significativas. Nuestros estudios fisicoquímicos y farmacocinéticos sugieren que los compuestos que contienen tiazol seleccionados poseen una naturaleza similar a la de un fármaco. Se investiga la actividad antibacteriana, anticancerígena, anticolinérgica y antifúngica de los compuestos que contienen tiazol seleccionados mediante métodos de acoplamiento molecular y de dinámica. Nuestros estudios de acoplamiento revelaron que M1 presenta una mayor afinidad de unión con las proteínas diana seleccionadas, lo que confirma su actividad biológica. De igual manera, M6, M9 y M10 poseen una menor energía de unión entre los compuestos que contienen los tiazoles seleccionados. Nuestras simulaciones muestran que el ligando M1 interactúa de forma fuerte con la proteína 1M17. Esto constituye una prueba más de que el ligando M1 es un candidato prometedor para el desarrollo de nuevos fármacos contra patógenos mortales.

Downloads

Download data is not yet available.

Author Biographies

Selvarengan Paranthaman, Kalasalingam Academy of Research and Education

Department of Physics and International Research Centre

Saranya Gurumoorthy, Kalasalingam Academy of Research and Education

Department of Physics and International Research Centre

Karthikeyan Asokan, Kalasalingam Academy of Research and Education

Department of Physics and International Research Centre

Department of Physics, M. Kumarasamy College of Engineering

Abiram Angamuthu, PSG College of Arts and Science

Department of Physics

Department of Physics, Rathinam Technical Campus

References

1. Tripathi, A. C.; Gupta, S. J.; Fatima, G. N.; Sonar, P. K.; Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2014, 72, 52–77. DOI: https://doi.org/https://doi.org/10.1016/j.ejmech.2013.11.017

2. Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. Eur. J. Med. Chem. 2017, 140, 542–594. DOI: https://doi.org/https://doi.org/10.1016/j.ejmech.2017.09.031

3. Kamble, R. D.; Meshram, R. J.; Hese, S. V.; More, R. A.; Kamble, S. S.; Gacche, R. N.; Dawane, B. S. Comput. Biol. Chem. 2016, 61, 86–96. DOI: https://doi.org/https://doi.org/10.1016/j.compbiolchem.2016.01.007

4. Mohareb, R.; Al-Omran, F.; Abdelaziz, M.; Ibrahim, R. Acta Chim. Slov. 2017, 64, 349–364.

5. Gümüş, M.; Yakan, M.; Koca, İ. Future Med. Chem. 2019, 11, 1979–1998. DOI: https://doi.org/10.4155/fmc-2018-0196

6. Bikobo, D. S. N.; Vodnar, D. C.; Stana, A.; Tiperciuc, B.; Nastasă, C.; Douchet, M.; Oniga, O. J. Saudi Chem. Soc. 2017, 21, 861–868. DOI: https://doi.org/https://doi.org/10.1016/j.jscs.2017.04.007

7. Althagafi, I.; El-Metwaly, N.; Farghaly, T. A. Molecules. 2019, 24, 1741. DOI: https://doi.org/10.3390/molecules24091741

8. Biernasiuk, A.; Kawczyńska, M.; Berecka-Rycerz, A.; Rosada, B.; Gumieniczek, A.; Malm, A.; Dzitko, K.; Łączkowski, K. Z. Med. Chem. Res. 2019, 28, 2023–2036. DOI: https://doi.org/10.1007/s00044-019-02433-2

9. Bondock, S.; Fouda, A. M. Synth. Commun. 2018, 48, 561–573. DOI: https://doi.org/10.1080/00397911.2017.1412465

10. Borcea, A. M.; Ionuț, I.; Crișan, O.; Oniga, O. Molecules. 2021, 26, 624. DOI: https://doi.org/10.3390/molecules26030624

11. Carbone, A.; Cascioferro, S.; Parrino, B.; Carbone, D.; Pecoraro, C.; Schillaci, D.; Cusimano, M. G.; Cirrincione, G.; Diana, P. Molecules. 2021, 26, 81. DOI: https://doi.org/10.3390/molecules26010081

12. Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Future Med. Chem. 2019, 11, 1929–1952. DOI: https://doi.org/10.4155/fmc-2018-0416

13. Carbone, D.; Vestuto, V.; Ferraro, M. R.; Ciaglia, T.; Pecoraro, C.; Sommella, E.; Cascioferro, S.; Salviati, E.; Novi, S.; Tecce, M. F.; Amodio, G.; Iraci, N.; Cirrincione, G.; Campiglia, P.; Diana, P.; Bertamino, A.; Parrino, B.; Ostacolo, C. Eur. J. Med. Chem. 2022, 234, 114233. DOI: https://doi.org/10.1016/j.ejmech.2022.114233

14. Di Franco, S.; Parrino, B.; Gaggianesi, M.; Pantina, V. D.; Bianca, P.; Nicotra, A.; Mangiapane, L. R.; Lo Iacono, M.; Ganduscio, G.; Veschi, V.; Brancato, O. R.; Glaviano, A.; Turdo, A.; Pillitteri, I.; Colarossi, L.; Cascioferro, S.; Carbone, D.; Pecoraro, C.; Fiori, M. E.; De Maria, R.; Todaro, M.; Screpanti, I.; Cirrincione, G.; Diana, P.; Stassi, G. iScience. 2021, 24, 102664. DOI: https://doi.org/10.1016/j.isci.2021.102664

15. Muhammad, Z. A.; Masaret, G. S.; Amin, M. M.; Abdallah, M. A.; Farghaly, T. A. Med. Chem. 2017, 13, 226–238. DOI: http://dx.doi.org/10.2174/1573406412666160920091146

16. Kryshchyshyn, A.; Roman, O.; Lozynskyi, A.; Lesyk, R. Sci. Pharm. 2018, 86, 26. DOI: https://doi.org/10.3390/scipharm86020026

17. Petrou, A.; Eleftheriou, P.; Geronikaki, A.; Akrivou, M. G.; Vizirianakis, I. Molecules. 2019, 24, 3821. DOI: https://doi.org/10.3390/molecules24213821

18. Khatik, G. L.; Datusalia, A. K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S. K. Curr. Drug Discovery Technol. 2018, 15, 163–177. DOI: https://doi.org/10.2174/1570163814666170915134018

19. Grozav, A.; Porumb, I. D.; Gǎinǎ, L. I.; Filip, L.; Hanganu, D. Molecules 2017, 22, 260. DOI: https://doi.org/10.3390/molecules22020260

20. Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V. T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. Chem.-Biol. Interact. 2018, 286, 119–131. DOI: https://doi.org/10.1016/j.cbi.2018.03.013

21. Liaras, K.; Fesatidou, M.; Geronikaki, A. Molecules. 2018, 23, 685. DOI: https://doi.org/10.3390/molecules23030685

22. Jacob, P. J.; Manju, S. L. Bioorg. Chem. 2020, 100, 103882. DOI: https://doi.org/10.1016/j.bioorg.2020.103882

23. Brito, C. C. B.; da Silva, H. V. C.; Brondani, D. J.; de Faria, A. R.; Ximenes, R. M.; da Silva, I. M.; de Albuquerque, J. F. C.; Castilho, M. S. J. Enzyme Inhib. Med. Chem. 2019, 34, 573–584. DOI: https://doi.org/10.1080/14756366.2018.1550752

24. Rodrigues, C. A.; dos Santos, P. F.; da Costa, M. O. L.; Pavani, T. F. A.; Xander, P.; Geraldo, M. M.; Mengarda, A.; de Moraes, J.; Rando, D. G. G. J. Venomous Anim. Toxins Incl. Trop. Dis. 2018, 24, 31. DOI: https://doi.org/10.1186/s40409-018-0163-x

25. Rouf, A.; Tanyeli, C. Eur. J. Med. Chem. 2015, 97, 911–927. DOI: https://doi.org/10.1016/j.ejmech.2014.10.058

26. Hadziyannis, S. J.; Papatheodoridis, G. V. Expert Rev. Anti-Infect. Ther. 2004, 2, 475–483.

27. Pasqualotto, A. C.; Thiele, K. O.; Goldani, L. Z. Curr. Opin. Invest. Drugs. 2010, 11, 165–174.

28. Kardos, N.; Demain, A. L. Appl. Microbiol. Biotechnol. 2011, 92, 677–687. DOI: https://doi.org/10.1007/s00253-011-3587-6

29. Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; Korting, H. C. Chemotherapy. 2008, 54, 245–259. DOI: https://doi.org/10.1159/000142334

30. Thierbach, G.; Reichenbach, H. Antimicrob. Agents Chemother. 1981, 19, 504–507. DOI: https://doi.org/10.1128/AAC.19.4.504

31. Li, X. H.; Yang, X. L.; Ling, Y.; Fan, Z. J.; Liang, X. M.; Wang, D. Q.; Chen, F. H.; Li, Z. M. J. Agric. Food Chem. 2005, 53, 2202–2206. DOI: https://doi.org/10.1021/jf0403944

32. Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, A.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Lancet. 2022, 399, 629–655. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0

33. Jonas, O. B.; Irwin, A.; Berthe, F. C. J.; Le Gall, F. G.; Marquez, P. V. World Bank Rep. 2017, 2.

34. Nikalje, A. P. G.; Tiwari, S. V.; Sarkate, A. P.; Karnik, K. S. Med. Chem. Res. 2018, 27, 157–169. DOI: https://doi.org/10.1007/s00044-017-2085-5

35. Dekate, S. M.; Hatzade, K. M.; Ghatole, A. M. Iran. J. Sci. 2023, 47, 953–961. DOI: https://doi.org/10.1007/s40995-023-01496-6

36. Grob, S. Molinspiration Cheminformatics Free Web Services. 2022. https://www.molinspiration.com/, accessed in May 2024.

37. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. Nucleic Acids Res. 2023, 51, D1373–D1380. DOI: https://doi.org/10.1093/nar/gkac956

38. Merecz-Sadowska, A.; Isca, V. M. S.; Sitarek, P.; Kowalczyk, T.; Małecka, M.; Zajdel, K.; Zielińska-Bliźniewska, H.; Jęcek, M.; Rijo, P.; Zajdel, R. Int. J. Mol. Sci. 2024, 25, 4529. DOI: https://doi.org/10.3390/ijms25084529

39. Alecu, I. M.; Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2010, 6, 2872–2887. DOI: https://doi.org/10.1021/ct100326h

40. Neese, F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. DOI: https://doi.org/10.1002/wcms.81

41. Dassault Systèmes BIOVIA. Discovery Studio Modeling Environment. Release 2017, San Diego: Dassault Systèmes, 2017.

42. Dallakyan, S.; Olson, A. J. Methods Mol. Biol. 2015, 1263, 243–250. DOI: https://doi.org/10.1007/978-1-4939-2269-7_19

43. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1–2, 19–25.

44. Huang, J.; MacKerell, A. D., Jr. J. Comput. Chem. 2013, 34, 2135–2145. DOI: https://doi.org/10.1002/jcc.23354

45. Cuendet, M. A.; Van Gunsteren, W. F. J. Chem. Phys. 2007, 127, 184102. DOI: https://doi.org/10.1063/1.2779878

46. Uddin, K. M.; Sakib, M.; Siraji, S.; Uddin, R.; Rahman, S.; Alodhayb, A.; Alibrahim, K. A.; Kumer, A.; Matin, M. M.; Bhuiyan, M. M. H. ACS Omega. 2023, 8, 20247–20256. DOI: https://doi.org/10.1021/acsomega.3c01123

47. Trabelsi, S.; Issaoui, N.; Brandán, S. A.; Bardak, F.; Roisnel, T.; Atac, A.; Marouani, H. J. Mol. Struct. 2019, 1185, 223–238. DOI: https://doi.org/10.1016/j.molstruc.2019.02.106

48. Petrou, A.; Fesatidou, M.; Geronikaki, A. Molecules. 2021, 26, 3166. DOI: https://doi.org/10.3390/molecules26113166

49. Shah, P.; Westwell, A. D. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540. DOI: https://doi.org/10.1080/14756360701425014

50. Mermer, A.; Bayrak, H.; Alyar, S.; Alagumuthu, M. J. Mol. Struct. 2020, 1208, 127891. DOI: https://doi.org/10.1016/j.molstruc.2020.127891

51. Zhou, Z.; Parr, R. G. J. Am. Chem. Soc. 1990, 112, 5720–5724.DOI: https://doi.org/10.1021/ja00171a007

52. Sharom, F. J. Essays Biochem. 2011, 50, 161–178. DOI: https://doi.org/10.1042/BSE0500161

53. Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 2002, 45, 2615–2623. DOI: https://doi.org/10.1021/jm020017n

54. Shadrack, D. M.; Ndesendo, V. M. K. Comput. Mol. Biosci. 2017, 7, 1–18. DOI: https://doi.org/10.4236/cmb.2017.71001

55. Kartsev, V.; Geronikaki, A.; Zubenko, A.; Petrou, A.; Ivanov, M.; Glamočlija, J.; Sokovic, M.; Divaeva, L.; Morkovnik, A.; Klimenko, A. Antibiotics. 2022, 11, 1337. DOI: https://doi.org/10.3390/antibiotics11101337

56. Babajan, B.; Anuradha, C. M.; Chaitanya, M.; Gowsia, D.; Kumar, C. S. Int. J. Integr. Biol. 2009, 6, 172–176.

57. Benson, T. E.; Walsh, C. T.; Massey, V. Biochemistry. 1997, 36, 796–805. DOI: https://doi.org/10.1021/bi962220o

58. Frlan, R.; Hrast, M.; Gobec, S. ACS Omega. 2023, 8, 36562–36570. DOI: https://doi.org/10.1021/acsomega.3c04813

59. Jain, P.; Guin, M.; De, A.; Singh, M. J. Phys. Org. Chem. 2023, 36, e4384. DOI: https://doi.org/10.1002/poc.4384

60. De, A.; Ray, H. P.; Jain, P.; Kaur, H.; Singh, N. J. Mol. Struct. 2020, 1199, 126901. DOI: https://doi.org/10.1016/J.MOLSTRUC.2019.126901

61. Mughal, E. U.; Sadiq, A.; Ashraf, J.; Zafar, M. N.; Sumrra, S. H.; Tariq, R.; Mumtaz, A.; Javid, A.; Khan, B. A.; Ali, A.; Javed, C. O. Bioorg. Chem. 2019, 91, 103124. DOI: https://doi.org/10.1016/J.BIOORG.2019.103124

62. Kolandaivel, P.; Selvarengan, P.; Gunavathy, K. V. Biochim. Biophys. Acta, Proteins Proteomics 2006, 1764, 138–145. DOI: https://doi.org/10.1016/j.bbapap.2005.10.016

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.

Loading...