Nanostructured Lipid Carriers-Chitosan Carrier System for Loading of Dipsacus Asper Essential Oil: Preparation, Characterization, Antioxidant Study

Authors

  • Yu Zhang Southwest University of Science and Technology
  • Mengjiao Mengjiao Sichuan College of Traditional Chinese Medicine
  • Jing Zou Southwest University of Science and Technology
  • Chaojun Li Southwest University of Science and Technology
  • Ming Kang Southwest University of Science and Technology
  • Xiaofeng Liang Southwest University of Science and Technology

DOI:

https://doi.org/10.29356/jmcs.v70i1.2165

Keywords:

Nanostructured lipid carriers, volatile oil, Dipsacus asper, storage stability

Abstract

Abstract. Dipsacus asper essential oil (DEO) was encapsulated within a nanostructured lipid carrier (DEO-NLC), with chitosan (DEO-NLC-CS) subsequently applied as a surface coating. These carriers ' physicochemical and morphological properties, stability, in vitro release performance, and antioxidant activity were investigated. This study presents a new approach to address the challenges of Dipsacus essential oil's volatility and poor water solubility. The average diameter of DEO-NLC and DEO-NLC-CS were 68.90 ± 1.18 and 119.40 ± 1.40 nm, respectively, as determined by dynamic light scattering (DLS). Scanning electron microscope (SEM) and transmission electron microscope (TEM) confirmed both carriers were spherical-like coating structures, which confirmed the results of DLS. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed the successful physical capture of DEO in DEO-NLC and DEO-NLC-CS. The X-ray diffractogram of DEO-NLC and DEO-NLC-CS exhibited a wide high-intensity peak at 2θ = 15~25°, indicating that DEO was entrapped within NLC. It has been confirmed through differential scanning calorimetry (DSC) that the chitosan matrix successfully encapsulated DEO. In vitro release studies showed that both exhibited good sustained release properties. The antioxidant studies showed that blank NLC, DEO-NLC, and DEO-NLC-CS have good 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH·) scavenging activities.

 

Resumen. El aceite esencial de Dipsacus asper (DEO) se encapsuló dentro de un portador lipídico nanoestructurado (DEO-NLC), y posteriormente se aplicó quitosano (DEO-NLC-CS) como recubrimiento de superficie. Se investigaron las propiedades fisicoquímicas y morfológicas, la estabilidad, el rendimiento de liberación in vitro y la actividad antioxidante de estos portadores. Este estudio presenta un nuevo enfoque para abordar los desafíos de la volatilidad y la mala solubilidad en agua del aceite esencial de Dipsacus. El diámetro promedio de DEO-NLC y DEO-NLC-CS fue 68,90 ± 1,18 y 119,40 ± 1,40 nm, respectivamente, según lo determinado por dispersión dinámica de luz (DLS). El microscopio electrónico de barrido (SEM) y el microscopio electrónico de transmisión (TEM) confirmaron que ambos portadores eran estructuras de recubrimiento esféricas, lo que confirmó los resultados de la DLS. La espectroscopia infrarroja de transformada de Fourier de reflectancia total atenuada (ATR-FTIR) mostró la captura física exitosa de DEO en DEO-NLC y DEO-NLC-CS. El difractograma de rayos X de DEO-NLC y DEO-NLC-CS mostró un pico amplio de alta intensidad en 2θ = 15~25°, lo que indica que el DEO quedó atrapado dentro de NLC. Se ha confirmado mediante calorimetría diferencial de barrido (DSC) que la matriz de quitosano encapsuló con éxito el DEO. Los estudios de liberación in vitro demostraron que ambos presentaban buenas propiedades de liberación sostenida. Los estudios de antioxidantes mostraron que los blancos NLC, DEO-NLC y DEO-NLC-CS tienen buenas actividades de eliminación del radical 1,1-difenil-2-picril-hidrazilo (DPPH·).

Downloads

Download data is not yet available.

Author Biographies

Yu Zhang, Southwest University of Science and Technology

School of Materials and Chemistry

Mianyang Key Laboratory of Traditional Chinese Medicine Resources Development and Utilization, Sichuan College of Traditional Chinese Medicine

Mengjiao Mengjiao, Sichuan College of Traditional Chinese Medicine

Mianyang Key Laboratory of Traditional Chinese Medicine Resources Development and Utilization

Jing Zou, Southwest University of Science and Technology

School of Materials and Chemistry

Chaojun Li, Southwest University of Science and Technology

School of Materials and Chemistry

Ming Kang, Southwest University of Science and Technology

School of Materials and Chemistry

Xiaofeng Liang, Southwest University of Science and Technology

School of Materials and Chemistry

Mianyang Key Laboratory of Traditional Chinese Medicine Resources Development and Utilization, Sichuan College of Traditional Chinese Medicine

References

1. Landis, R. F.; Gupta, A.; Lee, Y. W.; Wang, L. S.; Golba, B.; Couillaud, B.; Ridolfo, R.; Das, R.; Rotello, V. M. ACS. Nano. 2017, 11, 1, 946-952. DOI: https://doi.org/10.1021/acsnano.6b07537.

2. Negi, A.; Kesari, K. K. Micromachines. 2022, 13, 8, 1265. DOI: https://doi.org/10.3390/mi13081265.

3. Saporito, F.; Sandri, G.; Bonferoni, M. C.; Rossi, S.; Boselli, C.; Icaro Cornaglia, A.; Mannucci, B.; Grisoli, P.; Vigani, B.; Ferrari, F. Int. J. nanomedicine. 2018, 13, 8, 175-186. DOI: https://doi.org/10.2147/IJN.S152529.

4. Trifan, A.; Luca, S. V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A. C. Crit. Rev. Microbiol. 2020, 46, 3, 338-357. DOI: https://doi.org/10.1080/1040841X.2020.1782339.

5. Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Cancer. lett. 2014, 347, 2, 159-166. DOI: https://doi.org/10.1016/j.canlet.2014.03.013.

6. Seibert, J. B.; Viegas, J. S. R.; Almeida, T. C.; Amparo, T. R.; Rodrigues, I. V.; Lanza, J. S.; Frézard, F. J. G.; Soares, R.; Teixeira, L. F. M.; de Souza, G. H. B.; Vieira, P. M. A.; Barichello, J. M.; Dos Santos, O. D. H. J. Nat. Prod. 2019, 82, 12, 3208-3220. DOI: https://doi.org/10.1021/acs.jnatprod.8b00870.

7. Wu, H.; Moser, C.; Wang, H. Z.; Høiby, N.; Song, Z. J. Int. J. Oral. Sci. 2015, 7, 1, 1-7. DOI: https://doi.org/10.1038/ijos.2014.65.

8. Diniz do Nascimento, L.; Moraes, A. A. B.; Costa, K. S. D.; Pereira Galúcio, J. M.; Taube, P. S.; Costa, C. M. L.; Neves Cruz, J.; de Aguiar Andrade, E. H.; Faria, L. J. G. Biomolecules. 2020, 10, 7, 988. DOI: https://doi.org/10.3390/biom10070988.

9. Soltanzadeh, M.; Peighambardoust, S. H.; Ghanbarzadeh, B.; Mohammadi, M.; Lorenzo, J. M. Int. J. Biol. Macromol. 2021, 192, 1084-1097. DOI: https://doi.org/10.1016/j.ijbiomac.2021.10.070

10. Dong, N. N.; Chen, X. L.; Deng, B. L.; Xie, S. C.; Hu, J. J. Chin. Mater. Med. 2023, 48, 4,1076-1086. DOI: https://10.19540/j.cnki.cjcmm.20221102.703.

11. Moreira, P.; Matos, P.; Figueirinha, A.; Salgueiro, L.; Batista, M. T.; Branco, P. C.; Cruz, M.T.; Pereira, C. F. Int. J. Mol. Sci. 2022, 23, 15, 8812. DOI: https://doi.org/10.3390/ijms23158812.

12. Qin, T. T.; Xie, H. X.; Hu, J. W.; Zeng, J. S.; Liu, R.; Zeng, N. J. Chin. Mater. Med. 2023, 48, 4, 1066-1075. DOI: https://10.19540/j.cnki.cjcmm.20221014.705.

13. Silva, P.; Rodríguez-Pérez, M.; Gómez-Torres, Ó.; Burgos-Ramos, E. Nutr. Res. Rev. 2023, 36, 1, 140-154. DOI: https://doi.org/10.1017/S095442242100041X.

14. Luo, J. F.; Zhou, H.; Lio, C. K. Molecules(Basel,Switzerland). 2022, 27, 19, 6236. DOI: https://doi.org/10.3390/molecules27196236.

15. Xi, Y.; Zhao, T.; Shi, M.; Zhang, X.; Bao, Y.; Gao, J.; Shen, J.; Wang, H.; Xie, Z.; Wang, Q.; Li, Z.; Qin, D. Evid. Based. Complement. Alternat. Med. 2023, 2023, 2140327. DOI: https://doi.org/10.1155/2023/2140327.

16. Yao, W. L.; Pan, J.; Niu, T. F.; Yang, X. L.; Zhao, S. J.; Wang, Z. T.; Wang, R. F. Chin. Mater. Med. 2022, 47, 17, 4593-4599. DOI: https://10.7501/j.issn.0253-2670.2013.11.022.

17. Tian, S.; Zou, Y.; Wang, J.; Li, Y.; An, B. Z.; Liu, Y. Q. J. Ethnopharmacol. 2022, 295, 115399. DOI: https://doi.org/10.1016/j.jep.2022.115399.

18. Karimi, N.; Ghanbarzadeh, B.; Hamishehkar, H.; Mehramuz, B.; Kafil, H. S. Colloids. Interface. Sci. Commun. 2018, 22, 18-24. DOI: https://doi.org/10.1016/j.colcom.2017.11.006.

19. Liu, B.; Kou, J.; Li, F.; Huo, D.; Xu, J.; Zhou, X.; Meng, D.; Ghulam, M.; Artyom, B.; Gao, X.; Ma, N.; Han, D. Aging. 2020, 12, 9, 8622-8639. DOI: https://doi.org/10.18632/aging.103179.

20. Cai, M.; Wang, Y.; Wang, R.; Li, M.; Zhang, W.; Yu, J.; Hua, R. Int. J. Biol. Macromol. 2022, 202, 122-129. DOI: https://doi.org/10.1016/j.ijbiomac.2022.01.066.

21. Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 103, 109804. DOI: https://doi.org/10.1016/j.msec.2019.109804.

22. Tenchov, R.; Bird, R.; Curtz, A. E.; Zhou, Q. ACS. Nano. 2021, 15, 11, 16982-17015. DOI: https://doi.org/10.1021/acsnano.1c04996.

23. Wu, B.; Li, Y.; Li, Y. Y.;Shi, Z. H.; Bian, X. H.; Xia,Q. J. Biomater. Appl. 2022, 36, 8, 1444-1457. DOI: https://doi.org/10.1177/08853282211053923.

24. Bashiri, S.; Ghanbarzadeh, B.; Ayaseh, A.; Dehghannya, J.; Ehsani, A. LWT. 2020, 119, 108836. DOI: https://doi.org/10.1016/j.lwt.2019.108836

25. Yostawonkul, J.; Surassmo, S.; Iempridee, T.; Pimtong, W.; Suktham, K.; Sajomsang, W.; Gonil, P.; Ruktanonchai, U. R. Colloids. Surf. B. 2017, 149, 301-311. DOI: https://doi.org/10.1016/j.colsurfb.2016.09.049.

26. Wang, M.; Zhao, T.; Liu, Y.; Wang, Q.; Xing, S.; Li, L.; Wang, L.; Liu, L.; Gao, D.Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 71, 1231-1240. DOI: https://doi.org/10.1016/j.msec.2016.11.014.

27. Hasan, M.; Elkhoury, K.; Belhaj, N.; Kahn, C.; Tamayol, A.; Barberi-Heyob, M.; Arab-Tehrany, E.; Linder, M. Mar. Drugs. 2020, 18, 4, 217. DOI: https://doi.org/10.3390/md18040217.

28. Ramezanzade, L.; Hosseini, S. F.; Nikkhah, M. Food. Chem. 2017, 234, 220-229. DOI: https://doi.org/10.1016/j.foodchem.2017.04.177.

29. Tan, C.; Zhang, Y.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S.; Chang, D. Food. Funct. 2015, 6,12, 3702-3711. DOI: https://doi.org/10.1039/c5fo00256g.

30. Du, W.; Li, X.; Yang, Y.; Yue, X.; Jiang, D.; Ge, W.; Cai, B. Pharm. Biol. 2017, 55, 1, 2129-2135. DOI: https://doi.org/10.1080/13880209.2017.1297469.

31. Molino, A.; Mehariya, S.; Iovine, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Chianese, S.; Musmarra, D. Mar. Drugs. 2018, 16, 11, 432. DOI: https://doi.org/10.3390/md16110432

32. Ruan, N.; Jiao, Z.; Tang, L. J. AOAC. Int. 2022, 105, 1, 272-281. DOI: https://doi.org/10.1093/jaoacint/qsab108.

33. Soh, S. H.; Lee, L. Y. Pharmaceutics. 2019, 11, 1, 21. DOI: https://doi.org/10.3390/pharmaceutics11010021.

34. Kuś, P. M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. J. Pharm. Biomed. Anal. 2018, 158, 15-27. DOI: https://doi.org/10.1016/j.jpba.2018.05.041.

35. Wang, J.; Wang, H.; Xu, H.; Li, J.; Zhang, X.; Zhang, X. RSC. Adv. 2022,12,11,6583-6591. DOI: https://doi.org/10.1039/d1ra07638h.

36. Yao, K.; Ma, Y. Z.; Yi, G. H.; Wang, Y. X.; Zhou, X.; Zang, X.; Liu, Y. Q.; Wang, T.; He, X.W. Chin. J. Trop. Crops. 2022, 44, 7, 1478-1487. DOI: https://doi.org/10.3969/j.issn.1000-2561.2023.07.019

37. Lee, S. A.; Joung, H. J.; Park, H. J.; Shin, G. H. J. Food. Sci. 2017, 82, 4, 904-912. DOI: https://doi.org/10.1111/1750-3841.13655.

38. Kumbhar, D. D.; Pokharkar, V. B. Colloid. Surface. A. 2013, 416, 32-42. DOI: https://doi.org/10.1016/j.colsurfa.2012.10.031.

39. outo, E. B.; Müller, R. H. J. Microencapsul. 2005, 22, 501-510. DOI: https://doi.org/10.1080/02652040500162436.

40. Keivani Nahr, F.; Ghanbarzadeh, B.; Hamishehkar, H.; Samadi Kafil, H. J. Funct. Foods. 2018, 40, 1-8. DOI: https://doi.org/10.1016/j.jff.2017.09.028.

41. Hu, Q.; Zhou, F.; Ly, N. K.; Ordyna, J.; Peterson, T.; Fan, Z.; Wang, S. ACS. Nano. 2023, 17, 8586-8597. DOI: https://doi.org/10.1021/acsnano.3c01094

42. Teeranachaideekul, V.; Boonme, P.; Souto, E. B.; Müller, R. H.; Junyaprasert, V. B. J. Control. Release. 2008, 128, 134-141. DOI: https://doi.org/10.1016/j.jconrel.2008.02.011.

43. Chaiyasan, W.; Srinivas, S. P.; Tiyaboonchai, W. Mol. Vis. 2015, 21, 1224-1134. DOI: https://10.1016/J.IJPHARM.2021.121287.

44. Sun, R.; Xia, Q. Colloid. Surface. A. 2019, 574, 197-206. DOI: https://doi.org/10.1016/j.colsurfa.2019.04.082.

45. Pardeike, J.; Hommoss, A.; Müller, R. H. Int. J. Pharm. 2009, 366, 170-184. DOI: https://10.1016/j.ijpharm.2008.10.003.

46. Rai, N.; Madni, A.; Faisal, A.; Jamshaid, T.; Khan, M. I.; Khan, M. M.; Parveen, F. Curr. Drug. Deliv. 2021, 18, 1368-1376. DOI: https://doi.org/10.2174/1567201818666210203180153.

47. Yui, T.; Uto, T.; Ogawa, K. Nanomaterials (Basel, Switzerland). 2021, 11, 6, 1407. DOI: https://doi.org/10.3390/nano11061407.

48. Averina, E. S.; Seewald, G.; Müller, R. H.; Radnaeva, L. D.; Popov, D. V. Pharmazie. 2010, 65, 1, 25-31. DOI: https://10.1691/ph.2010.9203.

49. Mendes, A. I.; Silva, A. C.; Catita, J. A.; Cerqueira, F.; Gabriel, C.; Lopes, C. Colloids. Surf. B. 2013, 111, 755-763. DOI: https://doi.org/10.1016/j.colsurfb.2013.05.041.

50. Hu, Q.; Lu, Y.; Luo, Y. Carbohydr. Polym. 2021, 264, 117999. DOI: https://doi.org/10.1016/j.carbpol.2021.117999.

51. Araújo, J.; Nikolic, S.; Egea, M.A.; Souto E.B.; Garcia M.L. Colloids and Surfaces B: Biointerfaces, 2011, 88, 150–157. DOI: https://doi.org/10.1016/j.colsurfb.2011.06.025.

52. Yang, Y.H.; Pan, H.Z.; Song, B.J.; Zhu, X.J.; Sun, Y.W. Prog. Modern. Biomed. 2011, 11, 4024-4026. DOI: 10.13241/j.cnki.pmb.2011.21.006.

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.

Loading...