Intermolecular Lennard-Jones (22-11)Potential Energy Surface in Dimer of N8 Cubane Cluster

Authors

  • Jamshid Najafpour Department of Chemistry, Faculty of Science, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, P.O. Box: 18155-144, Iran

DOI:

https://doi.org/10.29356/jmcs.v59i2.20

Keywords:

Nitrogen cluster, IPES, Lennard-Jones (22-11) potential, second virial coefficient, BSSE, ab initio, DFT

Abstract

We have calculated the intermolecular potential energy surface (IPES) of the dimer of cubic N8 cluster using ab initio and the density functional theory (DFT) calculations. The ab initio (HF/3- 21G(d)) and DFT (B3LYP/6-31G(d) and aug-cc-pVDZ) calculations were performed for two relative orientations of N8-N8 system as a function of separation distance between the centers of cubic N8 clusters. In this research, the IPES, U(r), of the N8-N8 system is studied, where the edge of N8 approaches to face or edge of the other considered N8. Then, the Lennard-Jones (12-6) and (22-11) adjustable parameters are fitted to the computed interaction energies for edge-face and edge-edge orientations. In this research for the first time, the IPESs proportionated to the Lennard-Jones (22-11) potential are derived that are compatible with the computed IPES curves. Assuming a set of Lennard-Jones parameters, the second virial coefficients are obtained for the N8-N8 complex at a temperature range of 298 to 1000 K. Both the corrected and uncorrected basis set superposition error (BSSE) results are presented confirming the significance of including BSSE corrections.

Downloads

Download data is not yet available.

References

Hammerl, A.; Klapotke, T. M.; Schwerdtfeger, P. Chem. Eur. J. 2003, 9, 5511-5519. DOI: https://doi.org/10.1002/chem.200305125

Christe, K. O. Prop. Explos. Pyrotech. 2007, 32, 194-204.

Najafpour, J.; Foroutan-Nejad, C.; Shafiee, G. H.; Kordi-Peykani, M. Computational and Theoretical Chemistry. 2011, 974, 86-91. DOI: https://doi.org/10.1016/j.comptc.2011.07.013

Dixon, D. A.; Feller, D.; Christe, K. O.; Wilson, W. W.; Vij, A.; Vij, V.; Jenkins, H. D. B.; Olson, R. M.; Gordon, M. S. J. Am. Chem. Soc. 2004, 126, 834-843. DOI: https://doi.org/10.1021/ja0303182

Fau, S.; Wilson, K. J.; Bartlett, R. J. J. Phys. Chem. A 2002, 106, 4639-4644. DOI: https://doi.org/10.1021/jp015564j

Ha, T. -K.; Suleimenov, O.; Nguyen, M. T. Chem. Phys. Lett. 1999, 315, 327-334. DOI: https://doi.org/10.1016/S0009-2614(99)01271-3

Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93-113. DOI: https://doi.org/10.1016/S0010-8545(03)00101-2

Cheng, L. P.; Li, S.; Li, Q. S. Int. J. Quant. Chem. 2004, 97, 933-943. DOI: https://doi.org/10.1002/qua.10813

Gu, J. -D.; Chen, K. -X.; Jiang, H. -L.; Chen, J. -Z.; Ji, R. -Y.; Ren, Y.; Tian, A. -M. J. Mol. Struct. (THEOCHEM). 1998, 428, 183-188. DOI: https://doi.org/10.1016/S0166-1280(97)00277-7

Gagliardi, L.; Evangelisti, S.; Roos, B. O.; Widmark, P. -O. J. Mol. Struct. (THEOCHEM) .1998, 428, 1-8. DOI: https://doi.org/10.1016/S0166-1280(97)00256-X

Zhou, H.; Zheng, W.; Wang, X.; Ren, Y.; Wong, N. -B.; Shu, Y.; Tian, A. J. Mol. Struct. (THEOCHEM). 2005, 732, 139-148. DOI: https://doi.org/10.1016/j.theochem.2005.05.035

Sharma, H.; Garg, I.; Dharamvir, K.; Jindal, V. K. J. Phys. Chem. C. 2010, 114, 9153-9160. DOI: https://doi.org/10.1021/jp908755r

Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A. 2000, 104, 5647-5650. DOI: https://doi.org/10.1021/jp0004361

Hirshberg, B.; Gerber, R. B.; Krylov, A. I. Nature Chemistry. 2014, 6, 52-56. DOI: https://doi.org/10.1038/nchem.1818

Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem. Int. Ed. 1999, 38, 2004-2009. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7

Vij, A.; Wilson, W. W.; Vij, V.; Tham. F. S.; Sheehy, J. A.; Christe, K. O. J. Am. Chem. Soc. 2001, 123, 6308-6313. DOI: https://doi.org/10.1021/ja010141g

Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. Angew. Chem. Int. Ed. 2002, 41, 3051-3054. DOI: https://doi.org/10.1002/1521-3773(20020816)41:16<3051::AID-ANIE3051>3.0.CO;2-T

Ostmark, H.; Wallin, S.; Brinck, T.; Carlqvist, P.; Claridge, R.; Hedlund, E.; Yudina, L. Chem. Phys. Lett. 2003, 379, 539-546. DOI: https://doi.org/10.1016/j.cplett.2003.08.081

Wilson, W. W.; Vij, A.; Vij, V.; Bernhardt, E.; Christe, K. O. Chem. Eur. J. 2003, 9, 2840-2844. DOI: https://doi.org/10.1002/chem.200304973

Butler, R. N.; Stephens, J. C.; Burke, L. A. Chem. Commun. 2003, 8, 1016-1017. DOI: https://doi.org/10.1039/b301491f

Schroer, T.; Haiges, R.; Schneider, S.; Christe, K. O. Chem. Commun. 2005, 12, 1607-1609. DOI: https://doi.org/10.1039/b417010e

Butler, R. N.; Hanniffy, J. M.; Stephens, J. C.; Burke, L. J. Org. Chem. 2008, 73, 1354-1364. DOI: https://doi.org/10.1021/jo702423z

Engelke, R.; Stine, J. R. J. Phys. Chem. 1990, 94, 5689-5694. DOI: https://doi.org/10.1021/j100378a018

Lauderdale, W. J.; Stanton, J. F.; Bartlett, R. J. J. Phys. Chem. 1992, 96, 1173-1178. DOI: https://doi.org/10.1021/j100182a029

Leininger, M. L.; Sherrill C. D.; Schaefer, III, H. J. Phys. Chem. 1995, 99, 2324-2328. DOI: https://doi.org/10.1021/j100008a013

Gagliardi, L.; Evangelisti1, S.; Widmark, P. O.; Roos, B. O. Theor. Chem. Acc. 1997, 97, 136-142. DOI: https://doi.org/10.1007/s002140050246

Smith, L. R. J. Chem. Ed. 1978, 55, 569-570. DOI: https://doi.org/10.1021/ed055p569

March, J. Advanced Organic Chemistry New York, Wiley, 1985.

Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 3157-3158. DOI: https://doi.org/10.1021/ja01069a041

Li, A. H. –T.; Chaoa, S. D. J. Chem. Phys. 2006, 125, 094312.

Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553-566. DOI: https://doi.org/10.1080/00268977000101561

Monajjemi, M.; Khaleghian, M.; Mollaamin, F. Molecular Simulation. 2010, 36, 865-870. DOI: https://doi.org/10.1080/08927022.2010.489557

Shi, Y.; Brenner, D. W. J. Chem. Phys. 2007, 127, 134503. DOI: https://doi.org/10.1063/1.2779877

Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. DOI: https://doi.org/10.1063/1.464913

Becke, A. D. Phys. Rev. A. 1998, 38, 3098-3100. DOI: https://doi.org/10.1103/PhysRevA.38.3098

Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785-789. DOI: https://doi.org/10.1103/PhysRevB.37.785

Woon, D. E.; Dunning Jr, T. H. J. Chem. Phys. 1993, 98, 1358- 1371. DOI: https://doi.org/10.1063/1.464303

Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622. DOI: https://doi.org/10.1103/PhysRev.46.618

Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83-89. DOI: https://doi.org/10.1016/0009-2614(89)87442-1

Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. DOI: https://doi.org/10.1063/1.1677527

Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comp. Chem. 1983, 4, 294-301. DOI: https://doi.org/10.1002/jcc.540040303

Hariharan, P. C. Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-222. DOI: https://doi.org/10.1007/BF00533485

Spartan ‘10, Version 1.1.0, Deppmeier, B. J.; Driessen, A. J.; Hehre, T. S.; Hehre, W. J.; Johnson, J. A.; Klunzinger, P. E.; Leonard, J. M.; Pham, I. N., Pietro, W. J.; Yu, Jianguo, Irvine, CA, Wavefunction, Inc., 2011.

Sordo, J. A. J. Mol. Struct. (THEOCHEM) 2001, 537, 245-251. DOI: https://doi.org/10.1016/S0166-1280(00)00681-3

Mierzecki, R. Intermolecular Interactions Warsaw, PWN, 1974.

×

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.

Loading...