Fabrication of a Reactive Functionalized Microfilm with Aromatic Amines Applied to the Growth of Langerhans Cells

Authors

  • Ignacio A. Rivero Espejel Instituto Tecnológico de Tijuana
  • Martha Ávila-Cossío
  • Victor García-González

DOI:

https://doi.org/10.29356/jmcs.v68i1.2081

Keywords:

Ultrathin films, azlactone, β-cells, aromatic amine

Abstract

This study reports the synthesis of ultrathin polymeric films through layer-by-layer deposition and covalent cross-linking of poly(2-vinyl-4,4'-dimethylazlactone) and branched poly (ethylene imine) (PEI) which were functionalized with aromatic amines that encompass anilines. To assess the effect of these aromatics molecules on the adhesion and proliferation of Langerhans β-cells, we prepared 35 bilayers of unfunctionalized and functionalized films with aromatic amines, which were characterized in terms of their physical, chemical, and biological properties by a battery of experimental techniques including 1H and 13C, NMR, mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy and cell adhesion and staining. The films were nanometric, transparent, resistant to manipulation, chemically reactive, and highly cytocompatible. We demonstrated that films functionalized with aromatic molecules support the attachment and growth of in vitro Langerhans β-cells. This study provides the basis for a general approach to designing and functionalizing ultrathin films that promote cell growth on surfaces of interest for investigation in cell biology studies and a broad range of other biomedical applications.

 

Resumen. En este estudio se describe la síntesis de películas poliméricas ultrafinas mediante la técnica de capa por capa y la reticulación covalente de poli(2-vinil-4,4'-dimetilazlactona) y poli etilenimina (PEI) ramificado y, se funcionalizaron con aminas aromáticas que engloba las anilinas. Para evaluar el efecto de estas moléculas aromáticas en la adhesión y proliferación de las células β de Langerhans, se prepararon películas de 35 bicapas y se funcionalizaron con aminas aromáticas; se caracterizaron en términos de sus propiedades físicas, químicas y biológicas mediante una serie de técnicas experimentales que incluyeron 1H y 13C, RMN, espectrometría de masas, espectroscopia de infrarrojo por transformada de Fourier, microscopía electrónica de barrido por emisión de campo y tinción celular. En general, las películas fueron nanométricas, transparentes, resistentes a la manipulación, químicamente reactivas y altamente citocompatibles. Se demostró, además, que las películas funcionalizadas con moléculas aromáticas favorecen la adhesión y el crecimiento de células β in vitro. Este estudio establece las bases de un enfoque general para diseñar y funcionalizar películas ultrafinas, que promuevan el crecimiento celular en superficies de interés, para la investigación en estudios de biología celular y una gama amplia de aplicaciones biomédicas potenciales.

Downloads

Download data is not yet available.

Author Biography

Ignacio A. Rivero Espejel, Instituto Tecnológico de Tijuana

Profesor Investigador
Centro de Graduados e Investigación en Química

References

Hudish, L. I.; Reusch, J. E. B.; Sussel, L. J. Clin. Invest. 2019, 129, 4001–4008. DOI: https://doi.org/10.1172/JCI129188. DOI: https://doi.org/10.1172/JCI129188

Smith, G. I.; Mittendorfer, B.; Klein, S. J. Clin. Invest. 2019, 129 , 3978–3989. DOI: https://doi.org/10.1172/JCI129186. DOI: https://doi.org/10.1172/JCI129186

Reaven, G. M. Annu. Rev. 2003, 44, 121–131. DOI: https://doi.org/10.1146/ANNUREV.ME.44.020193.001005. DOI: https://doi.org/10.1146/annurev.me.44.020193.001005

Reaven, G. M. Diabetes 1988, 37, 1595–1607. DOI: https://doi.org/10.2337/DIAB.37.12.1595. DOI: https://doi.org/10.2337/diab.37.12.1595

O’Neill, S.; O’Driscoll, L. Obes. Rev. 2015, 16 , 1–12. DOI: https://doi.org/10.1111/OBR.12229. DOI: https://doi.org/10.1111/obr.12229

Lorenzo, C.; Okoloise, M.; Williams, K.; Stern, M. P.; Haffner, S. M. Diabetes Care- 2003, 26, 3153–3159. DOI: https://doi.org/10.2337/DIACARE.26.11.3153. DOI: https://doi.org/10.2337/diacare.26.11.3153

Anuradha, R.; Saraswati, M.; Kumar, K. G.; Rani, S. H. DNA Cell Biol. 2014, 33, 743–748. DOI: https://doi.org/10.1089/DNA.2014.2352. DOI: https://doi.org/10.1089/dna.2014.2352

Dotta, F.; Fondelli, C.; Di Mario, U. Acta Biomed. 2005, 76 Suppl 3, 14–18.

Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Diabetes Care. 2004, 27, 1047–1053. DOI: https://doi.org/10.2337/DIACARE.27.5.1047. DOI: https://doi.org/10.2337/diacare.27.5.1047

Pérez-Bravo, F.; Carrasco, E.; Gutierrez-López, M. D.; Martínez, M. T.; Lopez, G.; García De Los Rios, M. J. Mol. Med. (Berl). 1996, 74, 105–109. DOI: https://doi.org/10.1007/BF00196786. DOI: https://doi.org/10.1007/BF00196786

Krijnen, P. A. J.; Simsek, S.; Niessen, H. W. M. Apoptosis. 2009, 14, 1387. DOI: https://doi.org/10.1007/S10495-009-0419-6. DOI: https://doi.org/10.1007/s10495-009-0419-6

Martinez, S. C.; Tanabe, K.; Cras-Méneur, C.; Abumrad, N. A.; Bernal-Mizrachi, E.; Permutt, M. A. Diabetes. 2008, 57, 846–859. DOI: https://doi.org/10.2337/DB07-0595. DOI: https://doi.org/10.2337/db07-0595

Randle, P. J.; Garland, P. B.; Hales, C. N.; Newsholme, E. A. Lancet. 1963, 1, 785–789. DOI: https://doi.org/10.1016/S0140-6736(63)91500-9. DOI: https://doi.org/10.1016/S0140-6736(63)91500-9

Newsholme, P.; Keane, D.; Welters, H. J.; Morgan, N. G. Clin. Sci. (Lond). 2007, 112, 27–42. DOI: https://doi.org/10.1042/CS20060115. DOI: https://doi.org/10.1042/CS20060115

Acosta-Montaño, P.; Rodríguez-Velázquez, E.; Ibarra-López, E.; Frayde-Gómez, H.; Mas-Oliva, J.; Delgado-Coello, B.; Rivero, I. A.; Alatorre-Meda, M.; Aguilera, J.; Guevara-Olaya, L.; García-González, V. Cells. 2019, 8. DOI: https://doi.org/10.3390/CELLS8080884. DOI: https://doi.org/10.3390/cells8080884

Lewis, G. F.; Carpentier, A.; Adeli, K.; Giacca, A. Endocr. Rev. 2002, 23, 201–229. DOI: https://doi.org/10.1210/EDRV.23.2.0461. DOI: https://doi.org/10.1210/edrv.23.2.0461

Acosta-Montaño, P.; García-González, V. Nutrients. 2018, 10. DOI: https://doi.org/10.3390/NU10040393. DOI: https://doi.org/10.3390/nu10040393

Heimberg, H.; De Vos, A.; Vandercammen, A.; Van Schaftingen, E.; Pipeleers, D.; Schuit, F. EMBO J. 1993, 12, 2873–2879. DOI: https://doi.org/10.1002/J.1460-2075.1993.TB05949.X. DOI: https://doi.org/10.1002/j.1460-2075.1993.tb05949.x

Gupta, D.; Jetton, T. L.; LaRock, K.; Monga, N.; Satish, B.; Lausier, J.; Peshavaria, M.; Leahy, J. L. J. Biol. Chem. 2017, 292, 12449–12459. DOI: https://doi.org/10.1074/JBC.M117.781047. DOI: https://doi.org/10.1074/jbc.M117.781047

Poitout, V.; Amyot, J.; Semache, M.; Zarrouki, B.; Hagman, D.; Fontés, G. Biochim. Biophys. Acta. 2010, 1801, 289–298. DOI: https://doi.org/10.1016/J.BBALIP.2009.08.006. DOI: https://doi.org/10.1016/j.bbalip.2009.08.006

Donath, M. Y.; Shoelson, S. E. Nat. Rev. Immunol. 2011, 11, 98–107. DOI: https://doi.org/10.1038/NRI2925. DOI: https://doi.org/10.1038/nri2925

Ito, Y. Biomaterials. 1999, 20, 2333–2342. DOI: https://doi.org/10.1016/S0142-9612(99)00162-3. DOI: https://doi.org/10.1016/S0142-9612(99)00162-3

Wancura, M. M.; Anex-Ries, Q.; Carroll, A. L.; Paola Garcia, A.; Hindocha, P.; Buck, M. E. J. Polym. Sci. A Polym. Chem. 2017, 55, 3185–3194. DOI: https://doi.org/10.1002/POLA.28664. DOI: https://doi.org/10.1002/pola.28664

Buck, M. E.; Breitbach, A. S.; Belgrade, S. K.; Blackwell, H. E.; Lynn, D. M. Biomacromolecules. 2009, 10, 1564. DOI: https://doi.org/10.1021/BM9001552. DOI: https://doi.org/10.1021/bm9001552

Singhvi, R.; Kumar, A.; Lopez, G. P.; Stephanopoulos, G. N.; Wang, D. I. C.; Whitesides, G. M.; Ingber, D. E. Science. 1994, 264, 696–698. DOI: https://doi.org/10.1126/SCIENCE.8171320. DOI: https://doi.org/10.1126/science.8171320

Ávila-Cossío, M. E.; Rivero, I. A.; García-González, V.; Alatorre-Meda, M.; Rodríguez-Velázquez, E.; Calva-Yáñez, J. C.; Espinoza, K. A.; Pulido-Capiz, Á. ACS Omega. 2020, 5, 5249–5257. DOI: https://doi.org/10.1021/ACSOMEGA.9B04313. DOI: https://doi.org/10.1021/acsomega.9b04313

Nadal, A.; Alonso-Magdalena, P.; Soriano, S.; Quesada, I.; Ropero, A. B. Mol. Cell Endocrinol. 2009, 304, 63–68. DOI: https://doi.org/10.1016/J.MCE.2009.02.016. DOI: https://doi.org/10.1016/j.mce.2009.02.016

Decher, G. Science (1979). 1997, 277, 1232–1237. DOI: https://doi.org/10.1126/SCIENCE.277.5330.1232. DOI: https://doi.org/10.1126/science.277.5330.1232

Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A. Adv.Mater. 2006, 18, 3203–3224. DOI: https://doi.org/10.1002/ADMA.200600113. DOI: https://doi.org/10.1002/adma.200600113

Buck, M. E.; Zhang, J.; Lynn, D. M. Adv. Mater. 2007, 19, 3951–3955. DOI: https://doi.org/10.1002/ADMA.200700822. DOI: https://doi.org/10.1002/adma.200700822

Kolb, H. C.; Sharpless, K. B. Drug Discov. Today. 2003, 8, 1128–1137. DOI: https://doi.org/10.1016/S1359-6446(03)02933-7. DOI: https://doi.org/10.1016/S1359-6446(03)02933-7

Mrksich, M. Chem. Soc. Rev. 2000, 29, 267–273. DOI: https://doi.org/10.1039/A705397E. DOI: https://doi.org/10.1039/a705397e

Guevara-Olaya, L.; Chimal-Vega, B.; Castañeda-Sánchez, C. Y.; López-Cossio, L. Y.; Pulido-Capiz, A.; Galindo-Hernández, O.; Díaz-Molina, R.; Ruiz Esparza-Cisneros, J.; García-González, V. Metabolites. 2022, 12. DOI: https://doi.org/10.3390/METABO12080754. DOI: https://doi.org/10.3390/metabo12080754

Martínez-Navarro, I.; Díaz-Molina, R.; Pulido-Capiz, A.; Mas-Oliva, J.; Luna-Reyes, I.; Rodríguez-Velázquez, E.; Rivero, I. A.; Ramos-Ibarra, M. A.; Alatorre-Meda, M.; García-González, V. Biomolecules. 2020, 10, 1–21. DOI: https://doi.org/10.3390/BIOM10091201. DOI: https://doi.org/10.3390/biom10091201

Manna, U.; Raman, N.; Welsh, M. A.; Zayas-Gonzalez, Y. M.; Blackwell, H. E.; Palecek, S. P.; Lynn, D. M. Adv. Funct. Mater. 2016, 26, 3599–3611. DOI: https://doi.org/10.1002/ADFM.201505522. DOI: https://doi.org/10.1002/adfm.201505522

Broderick, A. H.; Azarin, S. M.; Buck, M. E.; Palecek, S. P.; Lynn, D. M. in: Fabrication of Amine-Reactive Polymer Multilayers on Microwell Cell Culture Arrays: Combining Methods for the Topographic Patterning of Cell Substrates with Approaches to Facile Surface Functionalization. AIChE January 1, 2011, 72–73. https://experts.umn.edu/en/publications/fabrication-of-amine-reactive-polymer-multilayers-on-microwell-ce, accessed June 2023.

Weeks, C. A.; Aden, B.; Zhang, J.; Singh, A.; Hickey, R. D.; Kilbey, S. M.; Nyberg, S. L.; Janorkar, A. V. J. Biomed. Mater. Res. A. 2017, 105, 377–388. DOI: https://doi.org/10.1002/JBM.A.35910. DOI: https://doi.org/10.1002/jbm.a.35910

Li, Y.; Wang, X.; Sun, J. Chem. Soc. Rev. 2012, 41, 5998–6009. DOI: https://doi.org/10.1039/C2CS35107B DOI: https://doi.org/10.1039/c2cs35107b

×

Downloads

Additional Files

Published

2024-01-01

Issue

Section

Special Issue dedicated to Prof. Joaquín Tamariz
x

Similar Articles

<< < 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...