Electrochemical Oxidation of Bentazon at Boron-doped Diamond Anodes: Implications of Operating Conditions in Energy Usage and Process Greenness

Authors

  • Noe Valladares Universidad Iberoamericana
  • Rubén Vázquez Medrano Universidad Iberoamericana
  • Dorian Prato-Garcia Universidad Nacional de Colombia-Sede Palmira
  • Jorge G. Ibanez Universidad Iberoamericana

DOI:

https://doi.org/10.29356/jmcs.v67i4.1997

Keywords:

Bentazon; boron-doped diamond, electrochemical oxidation, process greenness, sustainable energy mix

Abstract

Abstract. We studied the mineralization of the herbicide bentazon (Bn) through advanced electro-oxidation using a non-divided modified Diachem® cell. The treatment system consisted of an array of three boron-doped diamond (BDD) electrodes: cathode-anode-cathode. The chosen variables of interest were current density (j = 0.5, 1.0, and 1.5 mA cm-2), the initial Bn concentration (10, 50, and 100 mg L-1), and the volumetric flow (v = 280, 500, and 750 mL min-1). In all cases, a 0.04 M Na2SO4 and 0.05 M NaHSO4 (pH ~ 2) solution was used as the supporting electrolyte. Results indicate that, at low current densities, up to 86 % of the Bn present in the solution can be removed (j = 1.0 mA cm-2 and v = 500 mL min-1); however, additional increases in j (from 1.0 to 1.5 mA cm-2) slightly increase (2-3 %) the removal efficiency but increase 55 % the carbon footprint and the treatment cost. Likewise, increases in the volumetric flow from 500 to 750 mL min-1 marginally affect the elimination of Bn and the removal of total organic carbon (TOC) in 1% and 4 %, respectively. The highest efficiencies for TOC (68 %) and COD (82 %) removals were obtained with the following operational conditions: j = 1.0 mA cm-2 and v = 750 mL min-1.  Values obtained for the instantaneous current efficiency (ICE) showed an exponential reduction, suggesting that mass transfer influences importantly the efficiency of the process.

 

Resumen. En este trabajo se estudió la mineralización del herbicida bentazón (Bn) por medio de electroooxidación avanzada utilizando una celda no dividida Diachem® modificada. El sistema de tratamiento consta de un arreglo de tres electrodos de diamante dopado con boro (BDD): cátodo-ánodo-cátodo. Las variables de interés seleccionadas fueron: la densidad de corriente (j = 0.5, 1.0 y 1.5 mA cm-2), la concentración inicial de Bn (10, 50 y 100 mg L-1) y el flujo volumétrico (v = 280, 500 y 750 mL min-1). En todos los casos se usó como electrolito soporte   una solución de 0.04 M Na2SO4 y 0.05 M de NaHSO4 (pH ~ 2). Los resultados obtenidos indican que, a bajas densidades de corriente, se puede remover hasta el 86 % del Bn presente en solución (j = 1.0 mA cm-2 y v = 500 mL min-1); sin embargo, aumentos adicionales en j (de 1.0 a 1.5 mA cm-2) elevan ligeramente la eficiencia de remoción (2-3 %) pero incrementan hasta en un 55% la huella de carbono y el costo de tratamiento. De igual forma, incrementos en el flujo volumétrico de 500 a 750 mL min-1 afectan de forma marginal la eliminación del Bn y la remoción del carbono orgánico total (TOC) en un 1 % y 4 %, respectivamente. Las mayores eficiencias de remoción de TOC (68 %) y COD (82 %) se obtuvieron con las siguientes condiciones operativas: j = 1.0 mA cm-2 y v = 750 mL min-1.  Los valores obtenidos de la eficiencia de corriente instantánea (ICE) presentaron una reducción exponencial, lo cual sugiere que la transferencia de masa tiene una influencia importante en la eficiencia del proceso.

Downloads

Download data is not yet available.

Author Biographies

Noe Valladares , Universidad Iberoamericana

Departamento de Ingeniería Química, Industrial y de Alimentos

Rubén Vázquez Medrano, Universidad Iberoamericana

Departamento de Ingeniería Química, Industrial y de Alimentos

Dorian Prato-Garcia , Universidad Nacional de Colombia-Sede Palmira

Facultad de Ingeniería y Administración

Jorge G. Ibanez , Universidad Iberoamericana

Departamento de Ingeniería Química, Industrial y de Alimentos

References

Kaur, G. Int. J. Environ., Agr. Biotechnol. 2019, 4, 995–1004. DOI: http://dx.doi.org/10.22161/ijeab.4416. DOI: https://doi.org/10.22161/ijeab.4416

Qu, R. Y.; He, B.; Yang, J. F.; Lin, H. Y.; Yang, W. C.; Wu, Q. Y.; Li, Q. X.; Yang, G. F. Pestic. Sci. 2021, 77, 2620–2625 DOI: https://doi.org/10.1002/ps.6285. DOI: https://doi.org/10.1002/ps.6285

United Nations. Department of Economic and Social Affairs. 2022.

Centanni, M.; Ricci, G. F.; de Girolamo, A. M.; Romano, G.; Gentile, F. Environ. Pollut. 2023, 316, 120553. DOI: https://doi.org/10.1016/j.envpol.2022.120553. DOI: https://doi.org/10.1016/j.envpol.2022.120553

Li, Z.; Wu, Y.; Wang, C. Environmental Management. 2022 DOI: https://doi.org/10.1007/s00267-022-01717-5. DOI: https://doi.org/10.1007/s00267-022-01717-5

Singh, S.; Tiwari, S. Responses of plants to herbicides: Recent advances and future prospectives. in Plant Life under Changing Environment: Responses and Management. Academic Press: Cambridge, MA, USA, 2020, 237–250. DOI: https://doi.org/10.1016/B978-0-12-818204-8.00011-4. DOI: https://doi.org/10.1016/B978-0-12-818204-8.00011-4

Ania, C. O.; Béguin, F. Water Res. 2007, 41, 3372–3380. DOI: https://doi.org/10.1016/j.watres.2007.03.031. DOI: https://doi.org/10.1016/j.watres.2007.03.031

Ponce-Vejar, G.; Ramos de Robles, S. L.; Macias-Macias, J. O.; Petukhova, T.; Guzman-Novoa, E. Int. J. Environ. Res. Public Health. 2022, 19, 8199. DOI: https://doi.org/10.3390/ijerph19138199. DOI: https://doi.org/10.3390/ijerph19138199

Liu, Y.; Sun, T.; Su, Q.; Tang, Y.; Xu, X.; Akram, M.; Jiang, B. J. Colloid Sci. 2020, 575, 254–264. DOI: https://doi.org/10.1016/j.jcis.2020.04.092. DOI: https://doi.org/10.1016/j.jcis.2020.04.092

Fernández-Marchante, C. M.; Souza, F. L.; Millán, M.; Lobato, J.; Rodrigo, M. A. Sci. Total Environ. 2021, 754, 142230. DOI: https://doi.org/10.1016/j.scitotenv.2020.142230. DOI: https://doi.org/10.1016/j.scitotenv.2020.142230

Carrera-Cevallos, J. V.; Prato-Garcia, D.; Espinoza-Montero, P. J.; Vasquez-Medrano, R. Water Air Soil Pollut. 2021, 232, 1-15. DOI: https://doi.org/10.1007/s11270-020-04941-z. DOI: https://doi.org/10.1007/s11270-020-04941-z

Brienza, M.; Garcia-Segura, S. Chemosphere. 2022, 307, 135974.DOI: https://doi.org/10.1016/j.chemosphere.2022.135974. DOI: https://doi.org/10.1016/j.chemosphere.2022.135974

Becerra, D.; Arteaga, B. L.; Ochoa, Y. E.; Barajas-Solano, A. F.; García-Martínez, J. B..; Ramírez, L. F. Ing. Compet. 2020, 22, 1-12. DOI: https://doi.org/10.25100/iyc.v22i1.8135. DOI: https://doi.org/10.25100/iyc.v22i1.8135

Inticher, J.J.; Cabrera, L.C.; Guimarães, R.E.; Zorzo, C.F.; Pellenz, L.; Seibert, D.; Borba, F.H.; J. Environ. Chem. Eng. 2021, 9, 105883. DOI: https://doi.org/10.1016/j.jece.2021.105883. DOI: https://doi.org/10.1016/j.jece.2021.105883

Ganiyu, S. O.; Martinez-Huitle, C. A.; Rodrigo, M. A. Appl. Catal. B Environ. 2020, 270, 118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857

Pang, K.; Cheng, C.; Zhao, H.; Ma, Y.; Dong, B.; Hu. J. Microchem. J. 2021, 164, 105994. DOI: https://doi.org/10.1016/j.microc.2021.105994. DOI: https://doi.org/10.1016/j.microc.2021.105994

Cabrera, A.; Cox, L.; Spokas, K.; Hermosin, M.C.; Cornejo, J.; Koskinen, W.C. Sci. Total Environ. 2014, 470–471, 438–443. DOI: https://doi.org/10.1016/j.scitotenv.2013.09.080. DOI: https://doi.org/10.1016/j.scitotenv.2013.09.080

Tolgyesi, A.; Korozs, G.; Toth, E.; Balint, M.; Ma, X.; Sharma, V.K. Chemosphere. 2022, 286, 131927. DOI: https://doi.org/10.1016/j.chemosphere.2021.131927. DOI: https://doi.org/10.1016/j.chemosphere.2021.131927

Gholami, M.; Jonidi-Jafari, A.; Farzadkia, M.; Esrafili, A.; Godini, K.; Shirzad-Siboni, M. J. Environ. Manage. 2021, 294, 112962. DOI: https://doi.org/10.1016/j.jenvman.2021.112962. DOI: https://doi.org/10.1016/j.jenvman.2021.112962

Davezza, M.; Fabbri, D.; Pramauro, E.; Prevot, A. B. Chemosphere. 2012, 86, 335–340. DOI: https://doi.org/10.1016/j.chemosphere.2011.09.011. DOI: https://doi.org/10.1016/j.chemosphere.2011.09.011

Narayanan, V. S.; Prasath, P. V.; Ravichandran, K.; Easwaramoorthy, D.; Shahnavaz, Z.; Mohammad, F.; Lohedan, H. A. A.; Paiman, S.; Oh, W. C.; Sagadevan, S. Mater. Sci. Semicond. Process. 2020, 119, 105238. DOI: https://doi.org/10.1016/j.mssp.2020.105238. DOI: https://doi.org/10.1016/j.mssp.2020.105238

Li. N.; Li, R.; Yu, Y.; Zhao, J.; Yan, B. Chen, G. Sci. Total Environ. 2020, 741, 140492. DOI: https://doi.org/10.1016/j.scitotenv.2020.140492. DOI: https://doi.org/10.1016/j.scitotenv.2020.140492

García-Vara, M.; Hu, K.; Postigo, C.; Olmo, L.; Caminal, G.; Sarrà, M.; López de Alda, M. J. Hazard. Mater. 2021, 409, 124476. DOI: https://doi.org/10.1016/j.jhazmat.2020.124476. DOI: https://doi.org/10.1016/j.jhazmat.2020.124476

Avila, R.; García-Vara, M.; López-García, E.; Postigo, C.; de Alda, M.L.; Vicent, T.; Blánquez, P. Sci. Total Environ. 2022, 804, 150040. DOI: https://doi.org/10.1016/j.scitotenv.2021.150040. DOI: https://doi.org/10.1016/j.scitotenv.2021.150040

Spaltro, A.; Simonetti, S.; Alvarez Torrellas, S.; Garcia Rodriguez, J.; Ruiz, D.; Juan, A.; Allegretti, P. Appl. Surf. Sci. 2018, 433, 487–501. DOI: https://doi.org/10.1016/j.apsusc.2017.10.011. DOI: https://doi.org/10.1016/j.apsusc.2017.10.011

Moreira, F. C.; Boaventura, R. A. R.; Brillas, E.; Vilar, V. J. P. Appl. Catal. B Environ. 2017, 202, 217–261 DOI: https://doi.org/10.1016/j.apcatb.2016.08.037. DOI: https://doi.org/10.1016/j.apcatb.2016.08.037

Campos-González, E.; Frontana-Uribe, B. A.; Vasquez-Medrano, R.; Macías-Bravo, S.; Ibanez, J. G. J. Mex. Chem. Soc. 2014, 58, 315-321.

Valenzuela, A. L.; Vasquez-Medrano, R.; Ibanez, J. G.; Frontana-Uribe, B. A.; Prato-Garcia, D. Water Air Soil Pollut. 2017, 228. DOI: https://doi.org/10.1007/s11270-017-3244-5. DOI: https://doi.org/10.1007/s11270-017-3244-5

He, Y.; Lin, H.; Guo, Z.; Zhang, W.; Li, H.; Huang, W. Sep. Purif. Technol. 2019, 212, 802–821. DOI: https://doi.org/10.1016/j.seppur.2018.11.056. DOI: https://doi.org/10.1016/j.seppur.2018.11.056

Kapalka, A.; Fóti, G.; Comninellis, C. in: Basic principles of the electrochemical mineralization of organic pollutants for wastewater treatment. C. Comninellis & G. Chen, Eds., Springer, New York, 2010, 1–23. DOI: https://doi.org/10.1007/978-0-387-68318-8_1

Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Silva Martinez, S. Process Saf. Environ. Protect. 2020, 134, 292–307 DOI: https://doi.org/10.1016/j.psep.2019.12.004. DOI: https://doi.org/10.1016/j.psep.2019.12.004

Malato, S.; Blanco, J.; Maldonado, M. I.; Fernández-Ibáñez, P.; Campos, A. Appl. Catal. B. 2000, 28, 163–174. DOI: https://doi.org/10.1016/S0926-3373(00)00175-2. DOI: https://doi.org/10.1016/S0926-3373(00)00175-2

EPA, 2022. https://www.epa.gov/safepestcontrol/safe-disposal-pesticides Accessed 13/07/2023.

Brillas, E. Chem. Soc. 2020, 250, 126198 DOI: https://doi.org/10.1016/j.chemosphere.2020.126198. DOI: https://doi.org/10.1016/j.chemosphere.2020.126198

Garrido, E. M.; Lima, J. L. C.; Delerue-Matos, C. M.; Oliveira Brett, A. M. Talanta. 1998, 46, 1131-1135. DOI: https://doi.org/10.1016/S0039-9140(97)00380-9. DOI: https://doi.org/10.1016/S0039-9140(97)00380-9

Compton, R. G.; Laborda, E.; Ward, K. R. in: Understanding voltammetry: simulation of electrode processes, Compton, R. G., Ed., Imperial College Press, London, 2014, 30. DOI: https://doi.org/10.1142/p910. DOI: https://doi.org/10.1142/p910

Sandoval, M. A.; Calzadilla, W.; Salazar, R. Curr. Opin. Electroche. 2022, 33, 100939 DOI: https://doi.org/10.1016/j.coelec.2022.100939. DOI: https://doi.org/10.1016/j.coelec.2022.100939

Newman, J.; Balsara, Nitash P. in: Electrochemical Systems. The Ecs Texts and Monographs, Newman, J., Ed., Hoboken, John Wiley and Sons Ltd, 2021, 283-297.

Panizza, M.; Michaud, P.A.; Cerisola, G.; Comninellis, C. J. Electroanal. Chem. 2001, 507, 206–214 DOI: https://doi.org/10.1016/S0022-0728(01)00398-9. DOI: https://doi.org/10.1016/S0022-0728(01)00398-9

Rodrigo, M. A.; Michaud, P. A.; Duo, I.; Panizza, M.; Cerisola, G.; Comninellis, Ch. J. Electrochem. Soc. 2001, 148, D60-D64. DOI: http://dx.doi.org/10.1149/1.1362545. DOI: https://doi.org/10.1149/1.1362545

Espinoza-Montero, P. J.; Vasquez-Medrano, R.; Ibanez, J. G.; Frontana-Uribe, B. A. J. Electrochem. Soc. 2013, 160, G3171–G3177 DOI: http://dx.doi.org/10.1149/2.027307jes. DOI: https://doi.org/10.1149/2.027307jes

dos Santos, A. J.; Martínez-Huitle, C. A.; Sirés, I.; Brillas, E. ChemElectroChem, 2018, 5, 685–693. DOI: https://doi.org/10.1002/celc.201701238. DOI: https://doi.org/10.1002/celc.201701238

Silva Barni, M. F.; Doumic, L. I.; Procaccini, R. A.; Ayude, M. A.; Romeo, H. E. J. Environ. Manage. 2020, 263, 110403. DOI: https://doi.org/10.1016/j.jenvman.2020.110403. DOI: https://doi.org/10.1016/j.jenvman.2020.110403

Ganiyu, S. O.; Martínez-Huitle, C. A. Curr. Opin. Electrochem. 2021, 27,100678. DOI: https://doi.org/10.1016/j.coelec.2020.100678. DOI: https://doi.org/10.1016/j.coelec.2020.100678

Valero, D.; García-García, V.; Expósito, E.; Aldaz, A.; Montiel, V. Sep. Purif. Technol. 2014, 123, 15–22. DOI: https://doi.org/10.1016/j.seppur.2013.12.023. DOI: https://doi.org/10.1016/j.seppur.2013.12.023

Souza, F. L.; Lanza, M. R. V.; Llanos, J.; Saez, C.; Rodrigo, M. A.; Canizares, P. A. J. Environ. Manage. 2015, 158, 36–39. DOI: https://doi.org/10.1016/j.jenvman.2015.04.040. DOI: https://doi.org/10.1016/j.jenvman.2015.04.040

Millán, M.; Rodrigo, M. A.; Fernández-Marchante, C. M.; Canizares, P.; Lobato, J. ACS Sustain Chem. Eng. 2019, 7, 8303–8309. DOI: https://doi.org/10.1021/acssuschemeng.8b06704. DOI: https://doi.org/10.1021/acssuschemeng.8b06704

Montiel, V.; Valero, D.; Gallud, F.; García-García, V.; Expósito, E.; Iniesta, J. in Chapter 19 - prospective applications of renewable energy-based electrochemical systems in wastewater treatment. Electrochemical water and wastewater treatment, Martínez-Huitle, C. A., Rodrigo, M. A., Scialdone, O., Ed., Butterworth-Heinemann; Oxford, UK, 2018, 513–541, https://doi.org/10.1016/B978-0-12-813160-2.00019-5. DOI: https://doi.org/10.1016/B978-0-12-813160-2.00019-5

International Renewable Energy Agency. Renewable power generation costs in 2021. 2022, Abu Dhabi.

Huber, R.; Otto, S. In: Reviews of Environmental Contamination and Toxicology, vol. 137. Ware, G.W., Ed., Springer, New York, NY. 1994, 112-113 DOI: https://doi.org/10.1007/978-1-4612-2662-8_3. DOI: https://doi.org/10.1007/978-1-4612-2662-8_3

Abdessalem, A. K.; Oturan, M. A.; Oturan, N., Bellakhal, N.; Dachraoui, M. Int J Environ Anal Chem. 2010, 90, 468–477. DOI: https://doi.org/10.1080/03067310902999132. DOI: https://doi.org/10.1080/03067310902999132

dos Santos, M.; Silva, R.S.R.; Oishi, S.S.; Ferreira, N.G. Rev. Virtual Quim. 2019, 11, 1659–1681. DOI: 10.21577/1984-6835.20190117. DOI: https://doi.org/10.21577/1984-6835.20190117

Guelfi, D. R. V., Brillas, E., Gozzi, F., Machulek, A., de Oliveira, S. C.; Sirés, I. J. Environ. Manage. 2019, 231, 213–221. DOI: https://doi.org/10.1016/j.jenvman.2018.10.029. DOI: https://doi.org/10.1016/j.jenvman.2018.10.029

Alcaide, F.; Álvarez, G.; Guelfi, D. R. V.; Brillas, E.; Sirés, I. Chem. Eng. J. 2020, 379, 122417. DOI: https://doi.org/10.1016/j.cej.2019.122417. DOI: https://doi.org/10.1016/j.cej.2019.122417

Azeez Othman, M.; Yavuz, Y. Zanco J. Pure Appl. Sci. 2021, 33, 116-121.

×

Downloads

Published

2023-09-19

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Loading...