Photodegradation of Methylene Blue and Evans Blue by Iron and Sulphur Doped TiO2 Nanophotocatalyst under Ultraviolet and Visible Light Irradiation

Authors

  • Ali Zolfagharia University of Kashan
  • Mehran Riazian Islamic Azad University http://orcid.org/0000-0003-4343-9016
  • Mohsen Ashjari University of Kashan

DOI:

https://doi.org/10.29356/jmcs.v65i3.1516

Keywords:

Photocatalytic, TiO2, iron and sulphur, hydrothermal method, dopants

Abstract

Abstract. This research firstly aims to fabricate and characterize doped TiO2 nanoparticles (NPs) by iron and Sulphur dopants, and then the determination of the photocatalytic activity of NPs. Titanium tetraisopropoxide (TTIP), iron trichloride hexahydrate, thiouria, glacial acetic are utilized as precursors in the hydrothermal method without using a template or surfactant. The synthesized NPs are investigated by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), N2 adsorption-desorption, UV-Vis spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS) and Fourier transform infrared (FT-IR). The lattice constants, strain, stress, deformation energy density and crystallite size are investigated using Williamson-Hall (W-H) and Wagner-Halder (W-H) models by considering the different isotropic nature of the crystalline lattice. The X-ray analysis indicates the tetragonal anatase phase without dopant crystalline phases. The FE-SEM and TEM images reveal a granular shape of NPs with a mean diameter of about 35 nm. Decoloration or photodegradation of organic dyes such as methylene blue (MB) and Evans Blue (EV) under UV-Vis irradiation is a method to measure the photocatalytic activity of doped TiO2 NPs. The results indicate the significant effect of dopants on the photocatalytic activity of doped TiO2 NPs, so that in comparison with other studies, it has a higher performance and removal efficiency. The bandgap of NPs is estimated from the Kubelka-Munk theory to be 2.87 eV.     

 

Resumen. Esta investigación tiene como objetivo fabricar y caracterizar nanopartículas de TiO2 (NP) dopadas con hierro y azufre, y la actividad fotocatalítica de las NP. El tetraisopropóxido de titanio (TTIP), el tricloruro de hierro hexahidratado, la tiouria, el acético glacial fueron los precursores en la síntesi según el método hidrotermal y no se utilizó una plantilla o tensioactivo. Las NP sintetizadas se caracterizaron por difracción de rayos X (XRD), microscopía electrónica de emisión de campo (FE-SEM), espectroscopía de rayos X de dispersión de energía (EDX), microscopía electrónica de transmisión (TEM), adsorción-desorción de N2, espectroscopías UV-Vis, de reflectancia difusa UV-Vis (DRS) e infrarroja por transformada de Fourier (FT-IR). Las constantes de red, deformación, tensión, densidad de energía de deformación y tamaño de cristal se investigan utilizando modelos de Williamson-Hall (W-H) y Wagner-Halder (W-H), considerando la diferente naturaleza isotrópica de la red cristalina. El análisis de difracción de rayos X indica la fase anatasa tetragonal sin fases cristalinas dopantes. Las imágenes FE-SEM y TEM revelan una forma granular de las NP, con un diámetro promedio de aproximadamente 35 nm. La decoloración o fotodegradación de tintes orgánicos como el azul de metileno (MB) y el azul de Evans (EV) bajo irradiación UV-Vis es un método para medir la actividad fotocatalítica de las NP de TiO2 dopadas. Los resultados indican un efecto significativo de los dopantes sobre la actividad fotocatalítica de las NP de TiO2 dopadas, que, en comparación con otros estudios, tiene un mayor rendimiento y eficiencia de eliminación. La bandgap de las NP se estimó en 2.87 eV, a partir de la teoría de Kubelka-Munk.

Downloads

Download data is not yet available.

Author Biographies

Ali Zolfagharia, University of Kashan

Department of Chemical Engineering, Faculty of Engineering

Mehran Riazian, Islamic Azad University

Department of Engineering, Faculty of Science, Tonekabon Branch

Mohsen Ashjari, University of Kashan

Department of Chemical Engineering, Faculty of Engineering

References

Li, Z.; Yu, L.; Wang H.; Yang, H.; Ma, H. Nanomaterial., 2020, 10, 631-645. DOI: https://doi.org/10.3390/nano10040631

Mufti, N.; Laila, IK.; Fuad, A. Int. J. Phys.: Conf. Ser. 2017, 853, 012035. DOI: https://doi.org/10.1088/1742-6596/853/1/012035

Naik, K.M.; Higuchi, E.; Inoue, H. J. Power Sources. 2020, 455, 227972-227986. DOI: https://doi.org/10.1016/j.jpowsour.2020.227972

Karim, M.R.; Alam, M.M.; Aijaz, M.O.; Asiri, A.M.; AlMubaddel, F.S.; Rahman, M.M. RSC Advances. 2020, 10,12224-12233. DOI: https://doi.org/10.1039/C9RA09315J

Fagan, R.; Mc Cormack, D.E.; Dionysiou, D.D.; Pillai, S.C. Mater. Sci. Semicond. Process. 2016, 1 42, 2-14. DOI: https://doi.org/10.1016/j.mssp.2015.07.052

Zolfaghari, A.; Riazian, M.; Ashjari, M. Res. Chem. Intermed. 2021,47, 1809-1828. DOI: https://doi.org/10.1007/s11164-021-04396-9

Li, D.; Song, H.; Meng, X.; Shen, T.; Sun, J.; Han, W.; Wang, X. Nanomaterials. 2020, 10, 546-553.

Bahmanrokh, G.; Cazorla, C.; Mofarah, S.S.; Shahmiri, R.; Yao, Y.; Ismail, I.; Chen, W.F.; Koshy, P.; Sorrell, C.C. Nanoscale. 2020, 12, 4916-4934. DOI: https://doi.org/10.1039/C9NR08604H

Farner, J.M.; De Tommaso, J.; Mantel, H.; Cheong, R.S.; Tufenkji, N. Environ. Sci.: Nano. 2020, 7,1781-1793. DOI: https://doi.org/10.1039/D0EN00008F

Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Nanomaterials. 2020, 10, 387-399. DOI: https://doi.org/10.3390/nano10020387

Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P. Appl. Nanosci. 2015, 5, 449-456. DOI: https://doi.org/10.1007/s13204-014-0337-y

Najafi, F.; Faraji, M.; Marjani, A.P. J.Mex. Chem. Soc. 2019, 63,169-179. DOI: https://doi.org/10.29356/jmcs.v63i2.703

Cruz-González, N.; Calzadilla, O.; Roque, J.; Chalé-Lara, F.; Olarte, J.K.; Meléndez-Lira, M.; Zapta-Torres, M. Int. J. Photoenergy. 2020, 7, 1-10. DOI: https://doi.org/10.1155/2020/8740825

Pirsaheb, M.; Hossaini, H.; Nasseri, S.; Azizi, N.; Shahmoradi, B.; Khosravi, T. J. Nanostruct. Chem. 2020, 19, 1-7.

Rotich, J.; Mwamburi, M.; Walter, N.; Maghanga, C.; Munyati, O.; Hatwaambo, S. Mater. Res. Express. 2020, 7, 25505-22215. DOI: https://doi.org/10.1088/2053-1591/ab6e29

Sadeghzadeh-Attar, A. J. Asian Ceramic Societies. 2020, 8, 662-676. DOI: https://doi.org/10.1080/21870764.2020.1773621

Khairy, M.; Zakaria, W. Egypt. J. Pet. 2014, 23, 419-426. DOI: https://doi.org/10.1016/j.ejpe.2014.09.010

Choi, A.Y.; Han, C.H. J. Nanosci. Nanotech. 2014, 14, 8070-8073. DOI: https://doi.org/10.1166/jnn.2014.9469

Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Appl. Sci. 2019, 9, 2489-2496. DOI: https://doi.org/10.3390/app9122489

Al-Jitan S.; Palmisano, G.; Garlisi, C. Catalysts. 2020, 10, 227-238. DOI: https://doi.org/10.3390/catal10020227

Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S.J.'; Bartlett, J.; Nolan, M.; Pillai, S.C. Appl. Sci. 2018, 8, 2067-2074. DOI: https://doi.org/10.3390/app8112067

Zhu, X.; Pei, L.; Zhu, R.; Jiao, Y.; Tang, R.; Feng, W. Sci. Rep. 2018, 8, 1-4. DOI: https://doi.org/10.1038/s41598-018-30050-3

Wang, R.; Shen, J.; Zhang, W.; Liu, Q.; Zhang, M.; Tang, H. Ceram. Int. 2020, 46, 23-30. DOI: https://doi.org/10.1002/adfm.202004450

Li, Y.; Zhang, L.; Yu, L.; Li, D.; Meng, H.; Ai, Q.; Hu, J.; Jin, L.; Gao, J.; Liu, G. Ceram. Int. 2020, 46, 8-16. DOI: https://doi.org/10.1016/j.ceramint.2019.08.111

Phromma, S.; Wutikhun, T.; Kasamechonchung, P.; Eksangsri, T.; Sapcharoenkun, C. Appl. Sci. 2020, 10, 993-998. DOI: https://doi.org/10.3390/app10030993

Sun, Q.; Li, K.; Wu, S.; Han, B.; Sui, L.; Dong, L. New J. Chem. 2020, 44, 1942-1952. DOI: https://doi.org/10.1039/C9NJ05120A

Li. D.; Song, H.; Meng, X; Shen, T.; Sun, J.; Han, W.; Wang, X. Nanomaterials. 2020, 10, 546-552. DOI: https://doi.org/10.3390/nano10030546

Cerro-Prada, E.; García-Salgado, S.; Quijano, M.; Varela, F. Nanomaterials. 2019, 9, 26-32. DOI: https://doi.org/10.3390/nano9010026

Mushtaq, K.; Saeed, M.; Gul, W.; Munir, M; Firdous, A.; Yousaf, T.; Khan K.; Sarwar, H.M.; Riaz, M.A.; Zahid, S. Inorg. Nano-Met. Chem. 2020, 14, 1-7.

Inaba, R.; Fukahori, T.; Hamamoto, M.; Ohno, T. J. Mol. Catal. A: Chem. 2006, 260, 247-54. DOI: https://doi.org/10.1016/j.molcata.2006.06.053

Lee, M.S.; Park, S.S.; Lee, G.D.; Ju, C.S.; Hong, S.S. Catal. Today. 2005, 101, 283-290. DOI: https://doi.org/10.1016/j.cattod.2005.03.018

Zori, M.H. J. Inorg. Organomet. Polym. Mat. 2011, 21, 81-90. DOI: https://doi.org/10.1007/s10904-010-9419-9

Nasi, R.; Esposito, S.; Freyria, F.S.; Armandi, M.; Gadhi, T.A; Hernandez, S.; Rivolo, P.; Ditaranto, N.; Bonelli, B. Materials. 2019, 12, 937-942. DOI: https://doi.org/10.3390/ma12060937

Lassoued, M.S.; Lassoued, A.; Ammar, S.; Gadri, A.; Salah, A.B.; García-Granda, S. J. Mater. Sci.: Mater. Electron. 2018, 29, 8914-8922. DOI: https://doi.org/10.1007/s10854-018-8910-x

Sanchez-Martinez, A.; Koop-Santa, C.; Ceballos-Sanchez, O.; López-Mena, E.R.; González, M.A.; Rangel-Cobián, V.; Orozco-Guareño, E.; García-Guaderrama, M. Mater. Res. Express. 2019, 6, 85085-85091. DOI: https://doi.org/10.1088/2053-1591/ab21e8

Vadivel, D.; Branciforti, D.S.; Speltini, A.; Sturini, M.; Bellani, V.; Malaichamy, I.; Dondi, D. Catalysts. 2020, 10, 270-282. DOI: https://doi.org/10.3390/catal10030270

Ntozakhe, L.; Taziwa, R.T.; Mungondori, H.H. Mater. Res. Express. 2019, 6, 0850a9. DOI: https://doi.org/10.1088/2053-1591/ab2260

Asadnajafi, S.; Shahidi, S.; Dorranian, D. The Journal of the Textile Institute. 2020, 111, 122-128. DOI: https://doi.org/10.1080/00405000.2019.1624035

Aziz, W.J.; Ali, S.Q.; Jassim, N.Z. Silicon. 2018, 10, 2101-2107. DOI: https://doi.org/10.1007/s12633-017-9730-y

Alotaibi, A.M.; Sathasivam, S.; Williamson, B.A.; Kafizas, A.; Sotelo-Vazquez, C.; Taylor, A.; Scanlon, D.O.; Parkin, I.P. Chem. Mater. 2018, 30, 1353-1361. DOI: https://doi.org/10.1021/acs.chemmater.7b04944

Méndez-Lozano, N.; Apátiga-Castro, M.; Manzano-Ramírez, A.; Rivera-Muñoz, E.M.; Velázquez-Castillo, R.; Alberto-González, C.; Zamora-Antuñanom M. Results Phys. 2020, 16, 102891-102899. DOI: https://doi.org/10.1016/j.rinp.2019.102891

Gholami, M,; Zarei-jelyani, M.; Babaiee, M.; Baktashian, S.; Eqra, R. Ionics. 2020, 26, 4391-4399. DOI: https://doi.org/10.1007/s11581-020-03579-5

Giolli, C.; Rizzi, G.; Scrivani, A.; Ferpozzi, R.; Troglio, S.; Miranda, M.M.; Tolstoguzov, A.; Bardi, U.; Borgioli, F.; Fossati, A.; Credi, la metallurgia italiana. 5th Int. Surf. Eng. Con.(ISEC) Exhibition, Seattle (USA), 2008, 1, 27-36.

Aguilar, T.; Carrillo-Berdugo, I.; Gómez-Villarejo, R.; Gallardo, J.J.; Martínez-Merino, P.; Piñero, J.C.; Alcántara, R.; Fernández-Lorenzo, C.; Navas, J.A Nanomaterials. 2018, 8, 816-821. DOI: https://doi.org/10.3390/nano8100816

Wang, M.; Chen, C.; Zhao, B.; Zeng, Q.; He, D. Mater. Lett. 2013, 109, 104-107. DOI: https://doi.org/10.1016/j.matlet.2013.07.049

Kathavate, V.S.; Deshpande, P.P. Surf. Coat. Technol. 2020,11, 125902-125908. DOI: https://doi.org/10.1016/j.surfcoat.2020.125902

Ikraam, M.; Shahid, S.; Zaman, S.; Sarwar, M.N. J. Electron. Mater. 2016, 45, 4228-4236. DOI: https://doi.org/10.1007/s11664-016-4598-y

Billik, P.; Plesch, G.; Brezová, V.; Valko, M.; Mazúr, M. J. Phys. Chem. Solids. 2007, 68, 1112-1116. DOI: https://doi.org/10.1016/j.jpcs.2007.02.010

Khaghani-Dehaghani, M.A.; Ebrahimi-Kahrizsangi, R.; Setoudeh, N.; Nasiri-Tabrizi, B. Int. J. Refract. Met. Hard Mater. 2011, 29, 244-249. DOI: https://doi.org/10.1016/j.ijrmhm.2010.11.001

Dhahad, H.A.; Ali, S.A.; Chaichan, M.T. Case Studies in Thermal Engineering. 2020, 4, 100651-100661. DOI: https://doi.org/10.1016/j.csite.2020.100651

Pinchuk, V.A.; Kuzmin, A.V. Fuel. 2020, 267, 117220-117229. DOI: https://doi.org/10.1016/j.fuel.2020.117220

Moreira. A.J.; Campos, L.O.; Maldi, C.P.; Dias, J.A.; Paris, E.C.; Giraldi, T.R.; Freschi, G.P. Environ. Sci. Pollut. Res. 2020, 27, 27032-27047. DOI: https://doi.org/10.1007/s11356-020-08798-x

Quintero. Y; Mosquera. E.; Diosa, J.; García, A. J. Sol-Gel Sci. Technol. 2020, 5, 1-9.

Santhi, K.; Navaneethan, M;; Harish, S.; Ponnusamy, S.; Muthamizhchelvan, C. Appl. Surf. Sci. 2020, 500, 144058-144065. DOI: https://doi.org/10.1016/j.apsusc.2019.144058

Shojaie, A.; Fattahi, M.; Jorfi, S.; Ghasemi, B. J. Environ. Chem. Eng. 2017 , 5, 4564-4572. DOI: https://doi.org/10.1016/j.jece.2017.07.024

Riazian, M.; Yousefpoor, M. Int. J. Smart Nano Mater. 2020, 4, 1-8.

Beyer, J.; Mamakhel, A.; Søndergaard-Pedersen, F.; Yu, J.; Iversen, B.B. Nanoscale. 2020, 12, 2695-2702. DOI: https://doi.org/10.1039/C9NR09069J

Pawar V, Kumar M, Dubey PK, Singh P. InAIP Conference Proceedings, 2018, 23, 020020. DOI: https://doi.org/10.1063/1.5052089

Hamadanian, M.; Reisi-Vanani, A.; Behpour, M.; Esmaeily, A.S. Desalination. 2011, 281, 319-324. DOI: https://doi.org/10.1016/j.desal.2011.08.028

Jing, Y.; Mu, X.; Liu, X.; Liu, C. Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, 406, 670-675. DOI: https://doi.org/10.1016/j.nimb.2017.03.098

Mote, V.D.; Purushotham, Y.; Dole, B.N. Cerâmica. 2013, 59, 614-619. DOI: https://doi.org/10.1590/S0366-69132013000400019

Al?Tabbakh, A.A.; Karatepe, N.; Al?Zubaidi, A.B.; Benchaabane, A.; Mahmood, N.B. Int. J. Energy Res. 2019, 43, 1903-1911. DOI: https://doi.org/10.1002/er.4390

Rajender, G.; Giri, P.K. J. Alloys Compd. 2016, 676, 591-600. DOI: https://doi.org/10.1016/j.jallcom.2016.03.154

Fell, C.R.; Qian, D.; Carroll, K.J.; Chi, M.; Jones, J.L.; Meng, Y.S. Chem. Mater. 2013, 25, 1621-1629. DOI: https://doi.org/10.1021/cm4000119

Motevalizadeh, L.; Heidary, Z.; Abrishami, M.E. Bull. Mater. Sci. 2014, 37, 397-405. DOI: https://doi.org/10.1007/s12034-014-0676-z

Filippo, E.; Carlucci, C.; Capodilupo, A.L.; Perulli, P.; Conciauro, F.; Corrente, G.A.; Gigli, G.; Ciccarella, G. Mater. Res. 2015, 18, 473-481. DOI: https://doi.org/10.1590/1516-1439.301914

Ðor?evi?, V.; Mili?evi?, B.; Drami?anin, M.D. IntechOpen, 2017, 26, 25-52.

Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. New J. Chem. 2016, 40, 3000-3009. DOI: https://doi.org/10.1039/C5NJ03478G

Fischer, K.; Gawel, A.; Rosen, D.; Krause, M.; Abdul, Latif.; A, Griebel J.; Prager, A.; Schulze, A. Catalysts. 2017, 7, 209-316. DOI: https://doi.org/10.3390/catal7070209

Chelli, V.R.; Chakraborty, S.; Golder, A.K. J. Mol. Liq. 2018, 271, 380-388. DOI: https://doi.org/10.1016/j.molliq.2018.08.140

Bezrodna, T.; Puchkovska, G.; Shymanovska, V.; Baran, J.; Ratajczak, H. J. Mol. Struct. 2004, 700,175-181. DOI: https://doi.org/10.1016/j.molstruc.2003.12.057

Erkov, V.G.; Devyatova, S.F.; Molodstova, E.L.; Malsteva, T.V.; Yanovskii, U.A. Appl. Surf. Sci. 2000, 166, 51-56. DOI: https://doi.org/10.1016/S0169-4332(00)00415-3

Wang, X.; Jimmy C.Y.; Liu, P.; Wang, X.; Su, W.; Fu, X. J. Photochem. Photobiol,. A. 2006, 179, 339-347. DOI: https://doi.org/10.1016/j.jphotochem.2005.09.007

×

Published

2021-07-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.

Loading...