Electrochemical and Gravimetric Study on Corrosion Inhibition of Carbon Steels Exposed to Oilfield Produced Water

Authors

  • Luis Quej Ake Instituto Mexicano del Petróleo
  • J. L. Alamilla Instituto Mexicano del Petróleo
  • A. Contreras Instituto Mexicano del Petróleo

DOI:

https://doi.org/10.29356/jmcs.v67i4.1937

Keywords:

Inhibitor, Pipeline steel, Protection, Storage tanks

Abstract

Abstract. Two corrosion inhibitors (CI) were evaluated to study the protection behaviours of three carbon steels: X52, X60, and X70 in an oilfield produced water. The water was subjected to unstirred condition and a rotation speed of 600 rpm to simulate a stagnant and homogeneous solutions, respectively, it is in pipelines at temperature range of 30 °C to 60 °C. The internal corrosion rate and inhibition efficiencies were measured using polarization curves and gravimetric tests, complimented with the surface analysis of the corroded carbon steel samples using scanning electron microscopy (SEM). The experimental results suggested that the chlorides compounds, H2S, metals, and the inhibitor type modified the corrosion rate of the carbon steels under study. High corrosion rates were achieved on X70 steel at the temperature of 30 °C and 50 °C under 600 rpm. It was determined that X52 steel had the highest corrosion rate at 60 °C and 600 rpm. While an adequate protection of X70 steel was confirmed with a high inhibition efficiency using a naphthenic imidazoline as corrosion inhibitor.

 

Resumen. Se evaluaron dos inhibidores de corrosión para estudiar los comportamientos de protección de tres aceros al carbono: X52, X60 y X70 en agua congénita. El agua se sometió a condiciones sin agitación y una velocidad de rotación de 600 rpm para simular soluciones estancadas y homogéneas, respectivamente, el cual se encuentra en tanques de almacenamiento y tuberías en un rango de temperatura de 30 °C a 60 °C. La velocidad de corrosión interna y los valores de las eficiencias a la inhibición se determinaron mediante curvas de polarización y pruebas gravimétricas, las que fueron complementadas con el análisis de la superficie de las muestras de acero al carbono corroídas mediante microscopía electrónica de barrido. Los resultados experimentales sugirieron que los compuestos de cloruros, H2S, metales y el tipo de inhibidor, modificaron la velocidad de corrosión de los aceros al carbono en estudio. Altos valores de corrosión en acero X70 fueron alcanzados a la temperatura de 30 °C y 50 °C usando 600 rpm. Se determinó que el acero X52 tuvo la velocidad de corrosión más alta a 60 °C y 600 rpm. Mientras que se confirmó una protección adecuada del acero X70 con una alta eficiencia de inhibición usando imidazolina nafténica como inhibidor de corrosión.

Downloads

Download data is not yet available.

References

Groysman, A. Czech Assoc. Corros. Eng. 2017, 61, 100-117. DOI: https://doi.org/10.1515/kom-2017-0013

Lahme, S.; Mand, J.; Longwell, J.; Smith, R.; Enning, D. Appl. Environ. Microbiol. 2021, 87, 1-17. DOI: https://doi.org/10.1128/AEM.01819-20

Foroulis, Z. A. Anti-Corros. Methods Mater. 1981, 28, 4-9. DOI: https://doi.org/10.1108/eb007174

Fouda, A. S.; Elmorsi, M. A.; Fayed, T.; Shaban, S.M.; Azazy, O. Surf. Eng. Appl. Electrochem. 2018, 54, 180-193. DOI: https://doi.org/10.3103/S1068375518020060

Shao, Y.; Tang, J.; Zhang, T.; Meng, G.; Wang, F. Int. J. Electrochem. Sci. 2013, 8, 5546-5559. DOI: https://doi.org/10.1016/S1452-3981(23)14703-1

Álvarez-Manzano, R.; Mendoza-Canales, J.; Castillo-Cervantes, S.; Marín-Jesús, J. J. Mex. Chem. Soc. 2013, 57, 30-35.

Garnica-Rodríguez, A.; Genesca, J.; Mendoza-Flores, J.; Duran-Romero, R. J. Appli. Electrochem. 2009, 39, 1809-1819. DOI: https://doi.org/10.1007/s10800-009-9884-4

Xuejun, X.; Wanqin, Y.; Shunan, C.; Ling, P.; Xunjie, G.; Keru, P. Anti-Corrosos. Methods Mater. 2005, 52, 145-147. DOI: https://doi.org/10.1108/00035590510595120

Liu, D.; Chen, Z. Y.; Guo, X. P. Anti-Corrosos. Methods Mater. 2008, 55, 130-134. DOI: https://doi.org/10.1108/00035590810870437

Cheng, Y.; Bai, Y.; Li, Z.; Liu, J. G. Anti-Corrosos. Methods Mater. 2019, 66, 174-187. DOI: https://doi.org/10.1108/ACMM-07-2018-1969

Zhou, C.; Huang, Q.; Gou, Q.; Zheng, J.; Chen, X. Corros. Sci. 2016, 110, 242-252. DOI: https://doi.org/10.1016/j.corsci.2016.04.044

Lu, Y.; Zhang, Y.; Liu, Z.; Zhang, Y.; Wang, C.; Guo, H. Anti-Corrosos. Methods Mater. 2014, 61, 166-171. DOI: https://doi.org/10.1108/ACMM-02-2013-1240

Zafar, M.N.; Rihan, R.; Al-Hadhrami, L. Corros. Sci. 2015, 94, 275-287. DOI: https://doi.org/10.1016/j.corsci.2015.02.013

Demoz, A.; Papavinasam, S.; Omotoso, O.; Michaelian, K.; Revie, R. W. Corrosion. 2009, 65, 741-747. DOI: https://doi.org/10.5006/1.3319100

Liao, K.; Yao, Q.; Wu, X.; Jia, W. Energies. 2012, 5, 3892-3907. DOI: https://doi.org/10.3390/en5103892

Bandyopadhyay, S.; Neogy, C.; Den, S. K. Phys. Stat. Sol. 1984, 122, 113-123. DOI: https://doi.org/10.1002/pssb.2221220113

Refaey, S. A. M.; Taha, F.; Abd El-Malak, A. M. Int. J. Electrochem. Sci. 2006, 1, 80-91. DOI: https://doi.org/10.1016/S1452-3981(23)17138-0

Zarrok, H.; Zarrouk, A.; Salghi, R.; Ebn Touhami, M.; Oudda, H.; Hammouti, B.; Touir, R.; Bentis, F.; Al-Deyab, S. S. Int. J. Electrochem. Sci. 2013, 8, 6014-6032. DOI: https://doi.org/10.1016/S1452-3981(23)14736-5

Quej Ake, L. M.; Contreras, A.; Liu, H. B.; Alamilla, J. L.; Sosa, E. S.E.A.E. 2020, 56, 365-380. DOI: https://doi.org/10.3103/S1068375520030126

Quej Ake, L. M.; Contreras, A.; Liu, H. B.; Alamilla, J. L.; Sosa, E. Anti-Corrosos. Methods Mater. 2018, 65, 281-291. DOI: https://doi.org/10.1108/ACMM-12-2017-1874

Quej-Aké, L. M.; Contreras, A.; Aburto, J., in: Characterization of Metals and Alloys, Vol. 1, Pérez Campos, R.; Contreras Cuevas, A.; Esparza Muños, R.A., Eds., Springer, Switzerland, 2017, 13-28.

Quej-Aké, L. M.; Mireles, M. J.; Galvan-Martínez, R.; Contreras, A., in: Materials Characterization, Vol. 1, Pérez Campos, R.; Contreras Cuevas, A.; Esparza Muños, R.A., Eds., Springer, Switzerland, 2015, 101-118.

Quej Ake, L.M.; Contreras, A.; Aburto, J. Int. J. Electrochem. Sci. 2018, 13, 7416-7431. DOI: https://doi.org/10.20964/2018.08.73

Bard A.J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. J. Wiley & Sons, New York, 1980.

EPA 6010C. Inductively coupled plasma-atomic emission spectrometry (ICP-AES), 2000.

ASTM D4327-17. Standard Test Method for Anions in Water by Chemically Suppressed Ion Chromatography, ASTM International, West Conshohocken, PA, 2017.

Benítez, J. L.; Guzmán, G.; Muñoz L.; Sánchez, L. O.G.J. 2004, May 24, 60-65.

Benítez, J. L.; Martínez, C.; Roldan, R. O.G.J. 2002, June 17, 66-70.

Quej-Ake, L.M.; Marín Cruz, J.; Contreras, A. Anti-Corrosos. Methods Mater. 2017, 64, 61-68. DOI: https://doi.org/10.1108/ACMM-03-2015-1512

ASTM G170. Standard Guide for Evaluating and Qualifying Oilfield and Refinery Corrosion Inhibitors in the Laboratory, ASTM International, West Conshohocken, PA, 2012.

ASTM G184. Standard Test Method for Evaluating and Qualifying Oil and Refinery Corrosion Inhibitors Using Rotating Cage, ASTM International, West Conshohocken, PA, 2016.

ASTM G185. Standard Test Method for Evaluating and Qualifying Oil Field and Refinery Corrosion Inhibitors Using the Rotating Cylinder Electrode, ASTM International, West Conshohocken, PA, 2016.

NACE Standard TM0177. Laboratory Testing of Metals for Resistance to Specific Forms of Environmental Cracking in H2S Environments, NACE International, TX, US, 2005.

Vedage, H.; Ramanarayanan, T. A.; Mumford J.D.; Smith, S. N. Corrosion. 1993, 49, 114-121. DOI: https://doi.org/10.5006/1.3299205

ASTM G102. Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, West Conshohocken, PA, 2015.

El Mehdi, B.; Mernari, B.; Traisnel, M.; Bentiss, F.; Lagrenée, M. Corros. Sci. 2002, 77, 489-496. DOI: https://doi.org/10.1016/S0254-0584(02)00085-8

NACE Standard SP0775. Preparation, Installation, Analysis, an Interpretation of Corrosion Coupons in Oilfield Operations, NACE International, TX, US, 2018.

ASTM G1-03(17). Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, ASTM International, West Conshohocken, PA, 2017.

NACE/ASTM TM0169. Laboratory Corrosion Testing of Metals, NACE International, TX, US, 2012.

Zhang, G. A.; Cheng, Y.F. Corros. Sci. 2009, 51, 87-94. DOI: https://doi.org/10.1016/j.corsci.2008.10.013

Sherif, E. S. M.; Almajid, A. A.; Khalil, A. K.; Junaedi, H.; Latief, F.H. Int. J. Electrochem. Sci. 2013, 9360-9370. DOI: https://doi.org/10.1016/S1452-3981(23)12975-0

Peng, H.; Luan, Z.; Liu, J.; Lei, Y.; Chen, J.; Deng, S.; Su, X. Anti-Corrosos. Methods Mater. 2021, 68, 438-448. DOI: https://doi.org/10.1108/ACMM-06-2020-2328

Quej Ake, L. M.; Contreras, A.; Lui H.; Alamilla, J. L.; Sosa, E. Anti-Corrosos. Methods Mater. 2019, 66, 101-114. DOI: https://doi.org/10.1108/ACMM-06-2018-1959

Quej Ake, L. M.; Contreras, A.; Aburto, J. E. Anti-Corrosos. Methods Mater. 2018, 65, 234-248. DOI: https://doi.org/10.1108/ACMM-03-2017-1770

Bentiss, F.; Lebrini, M.; Lagrenée, M. Corros. Sci. 2005, 47, 2915-2931. DOI: https://doi.org/10.1016/j.corsci.2005.05.034

Negm, N. A.; Al Sabagh, A. M.; Migahed, M. A.; Abdel Bary, H. M.; El Din, H. M. Corros. Sci. 2010, 52, 2122-2132. DOI: https://doi.org/10.1016/j.corsci.2010.02.044

Arcenegui Troya, J.; Sánchez Jiménez, P.E.; Perejón, A.; Pérez Maqueda, L. A. J. Therm. Anal. Calorim. 2022. DOI: https://doi.org/10.1007/s10973-022-11728-3. DOI: https://doi.org/10.1007/s10973-022-11728-3

Seikh, A. H.; Sherif, E. S. M. Int. J. Electrochem. Sci. 2015, 895-908. DOI: https://doi.org/10.1016/S1452-3981(23)05042-3

Noor El-Din, M. R.; Al Sabagh, A. M.; Hegazy, E. M. A. J. Dispersion Sci. Technol. 2012, 33, 1444-1451. DOI: https://doi.org/10.1080/01932691.2011.605660

Gogoi, P. K.; Barhai, B. Int. J. Electrochem. Sci. 2011, 136-145. DOI: https://doi.org/10.1016/S1452-3981(23)14981-9

Li, S.; Zeng, Z.; Harris, M. A.; Sánchez, L. J.; Cong, H. Frontiers in Maters. 2019, 6, 10.

DOI: 10.3389/fmats.2019.00010. DOI: https://doi.org/10.3389/fmats.2019.00010

Quej Ake, L. M.; García Jiménez, S.; Liu, H. B.; Alamilla, J. L.; Angeles Chavez, C. Anti-Corrosos. Methods Mater. 2022, 69, 131-140. DOI: https://doi.org/10.1108/ACMM-06-2021-2492

ASTM G5. Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements, ASTM International, West Conshohocken, PA, 2021.

×

Downloads

Published

2023-09-19

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.

Loading...