A Review of Mexican Contributions to Li₂CuO₂ and its Chemical Modifications as Cathode Materials for Lithium-Ion Batteries
DOI:
https://doi.org/10.29356/jmcs.v68i4.2294Keywords:
Li2CuO2, cation doping, anion doping, dual doping, in situ analysisAbstract
Over the past few decades, battery research has primarily focused on reducing costs and increasing energy density. There have been significant efforts to identify alternative cathode materials that could replace cobalt-based ones, with the goal of finding more environmentally friendly and cost-effective options. In this context, copper-based cathodes have emerged as promising candidates. The appeal of copper-based cathodes lies in their relatively high abundance, particularly in Mexico, their high theoretical energy density, and the potential to enhance their properties by altering their chemical structure. In recent years, numerous research initiatives in Mexico have aimed to make Li2CuO2 cathodes a viable option. This review examines the recent advances and future perspectives of these efforts, with a particular emphasis on the latest attempts to modify the synthesis route and incorporate multiple dopants to create synergistic effects.
Resumen. Durante las últimas décadas, la investigación sobre baterías se ha enfocado principalmente en la disminución de costos y el incremento de la densidad energética. Se han realizado importantes esfuerzos para identificar materiales catódicos alternativos que podrían reemplazar a los materiales basados en cobalto, con el objetivo de encontrar opciones rentables y con menor impacto al medio ambiente. En este contexto, los materiales catódicos basados en cobre se han convertido en candidatos prometedores. El interés por los cátodos basados en cobre radica en su abundancia relativamente alta, particularmente en México, su alta densidad energética teórica y la cualidad de mejorar sus propiedades alterando su estructura química. En los últimos años, numerosas propuestas de investigación en México han tenido como objetivo hacer de los cátodos de Li2CuO2 una opción viable. Este resumen recopila los avances recientes y las perspectivas a futuro de estos esfuerzos, con especial énfasis en los últimos intentos de modificar la ruta de síntesis y, a su vez, incorporar múltiples dopantes para crear efectos sinérgicos.
Downloads
References
Jäger-Waldau A. EPJ Photovoltaics, 2022, 13. DOI: https://doi.org/10.1051/epjpv/2022010. DOI: https://doi.org/10.1051/epjpv/2022010
Summerfield-Ryan O., Park S., Ecological Economics, 2023, 210, 107841. DOI: https://doi.org/10.1016/j.ecolecon.2023.107841. DOI: https://doi.org/10.1016/j.ecolecon.2023.107841
Perez M., Perez R., Solar Energy Advances, 2022, 2, 100014. DOI: https://doi.org/10.1016/j.seja.2022.100014. DOI: https://doi.org/10.1016/j.seja.2022.100014
Vivoda V., Bazilian M.D., Khadim A., Ralph N., Krame G., Energy Res Soc Sci, 2024, 108, 103393. DOI: https://doi.org/10.1016/j.erss.2023.103393. DOI: https://doi.org/10.1016/j.erss.2023.103393
Hoppe R., Rieck H, Zeitschrift für anorganische und allgemeine Chemie, 1970, 379, 2, 157-164. DOI: https://doi.org/10.1002/zaac.19703790206. DOI: https://doi.org/10.1002/zaac.19703790206
Hoffmann R., Hoppe R., Schäfer W., Zeitschrift für anorganische und allgemeine Chemie, 1989, 578, 1, 18-26. DOI: https://doi.org/10.1002/zaac.19895780103. DOI: https://doi.org/10.1002/zaac.19895780103
Sapiña F., Rodríguez-Carvajal J., Sanchis M.J., Ibáñez R., Beltrán A., Beltrán D., Solid State Commun, 1990, 74, 779–784. DOI: https://doi.org/10.1016/0038-1098(90)90934-4. DOI: https://doi.org/10.1016/0038-1098(90)90934-4
Prakash A.S., Larcher D., Morcrette M., Hegde M.S., Leriche J., 2005, 74, 4406–4415. DOI: https://doi.org/10.1021/cm0508266. DOI: https://doi.org/10.1021/cm0508266
Ruther R.E., Samuthira Pandian A., Yan P., Weker J.N., Wang C., Nanda J., Chemistry of Materials, 2017, 29, 2997–3005. DOI: https://doi.org/10.1021/acs.chemmater.6b05442. DOI: https://doi.org/10.1021/acs.chemmater.6b05442
Ruther R.E., Zhou H., Dhital C., Saravanan K., Kercher A.K., Chen G., et al., Chemistry of Materials, 2015, 27, 6746–6754. DOI: https://doi.org/10.1021/acs.chemmater.5b02843. DOI: https://doi.org/10.1021/acs.chemmater.5b02843
Xu J., Renfrew S., Marcus M.A., Sun M., McCloskey B.D., Tong W., Journal of Physical Chemistry C, 2017, 121, 11100–11107. DOI: https://doi.org/10.1021/acs.jpcc.7b01799. DOI: https://doi.org/10.1021/acs.jpcc.7b01799
Martínez-Cruz M.A., Yañez-Aulestia A., Ramos-Sánchez G., Oliver-Tolentino M., Vera M., Pfeiffer H., et al., Dalton Transactions, 2020, 49, 4549–4558. DOI: https://doi.org/10.1039/D0DT00273A. DOI: https://doi.org/10.1039/D0DT00273A
Arachi Y., Ide T., Nakagawa T., Nakata Y., ECS Trans, 2012, 50, 143–151. DOI: https://doi.org/10.1149/05024.0143ecst. DOI: https://doi.org/10.1149/05024.0143ecst
Perea-Ramírez L.I., Guevara-García A., Galván M., J Mol Model, 2018, 24, 227. DOI: https://doi.org/10.1007/s00894-018-3754-0. DOI: https://doi.org/10.1007/s00894-018-3754-0
Juarez-Yescas C., Oliver-Tolentino M., Ramos-Sánchez G., Vera-Ramirez M.A., Olmedo-González J., Ochoa-Calle A., et al., ACS Appl Energy Mater, 2020, 3, 2771–2780. DOI: https://doi.org/10.1021/acsaem.9b02429. DOI: https://doi.org/10.1021/acsaem.9b02429
Ramos-Sanchez G., Romero-Ibarra I.C., Vazquez-Arenas J., Tapia C., Aguilar-Eseiza N., Gonzalez I., Solid State Ion, 2017, 303, 89–96. DOI: https://doi.org/10.1016/j.ssi.2017.02.018. DOI: https://doi.org/10.1016/j.ssi.2017.02.018
Aguilar-Eseiza N., Ramos-Sánchez G., González F., González I., Electrochem Commun, 2018, 96, 32–36. DOI: https://doi.org/10.1016/j.elecom.2018.09.002. DOI: https://doi.org/10.1016/j.elecom.2018.09.002
Shannon R.D., Acta Crystallographica Section A, 1976, 32, 768–771. DOI: https://doi.org/10.1107/S0567739476001551. DOI: https://doi.org/10.1107/S0567739476001563
Mizuno Y., Tohyama T., Maekawa S., Phys Rev B Condens Matter Mater Phys, 1999, 60, 6230–6233. DOI: https://doi.org/10.1103/PhysRevB.60.6230. DOI: https://doi.org/10.1103/PhysRevE.60.6230
Garcia Carrillo B.A., Estudio de cuprato de litio modificado con iones de metales de transición como cátodo alternativo para baterías de ion litio, Universidad Autónoma Metropolitana, 2023
Weng Y., Zhang H., Ionics (Kiel), 2024, 30, 1885–1895. DOI: https://doi.org/10.1007/s11581-023-05366-4. DOI: https://doi.org/10.1007/s11581-023-05366-4
He Z., Zhang M., Zhou K., Cheng Y., Luo M., Su Y., et al., ACS Appl Energy Mater, 2023, 6, 3422–3431. DOI: https://doi.org/10.1021/acsaem.2c04133. DOI: https://doi.org/10.1021/acsaem.2c04133
Ahn H., Choi J., Kim M., Kyu Kang S., Jang D., Maeng J., et al., Chemistry of Materials, 2024, 36, 9, 4379-4392. DOI: https://doi.org/10.1021/acs.chemmater.3c03307. DOI: https://doi.org/10.1021/acs.chemmater.3c03307
Kong F., Liang C., Longo R.C., Yeon D.H., Zheng Y., Park J.H., et al., Chemistry of Materials, 2016, 28, 6942–6952. DOI: https://doi.org/10.1021/acs.chemmater.6b02627. DOI: https://doi.org/10.1021/acs.chemmater.6b02627
Kim H., Kim S.B., Park D.H., Park K.W., Energies (Basel), 2020, 13, 4808-4817. DOI: https://doi.org/10.3390/en13184808. DOI: https://doi.org/10.3390/en13184808
Lin Y., Zhong K., Zheng J., Liang M., Xu G., Feng Q., et al., ACS Appl Energy Mater, 2021, 4, 9848–9857. DOI: https://doi.org/10.1021/acsaem.1c01883. DOI: https://doi.org/10.1021/acsaem.1c01883
Dai K., Wu J., Zhuo Z., Li Q., Sallis S., Mao J., et al., Joule, 2019, 3, 518–541. DOI: https://doi.org/10.1016/j.joule.2018.11.014. DOI: https://doi.org/10.1016/j.joule.2018.11.014
Martínez-Cruz M.A., Ramos-Sánchez G., Oliver-Tolentino M., Pfeiffer H., González I., J Alloys Compd, 2022, 923, 166328. DOI: https://doi.org/10.1016/j.jallcom.2022.166328. DOI: https://doi.org/10.1016/j.jallcom.2022.166328
Zhang Y., Li H., Liu J., Liu J., Ma H., Cheng F., Journal of Energy Chemistry, 2021, 63, 312-319. DOI: https://doi.org/10.1016/j.jechem.2021.07.029. DOI: https://doi.org/10.1016/j.jechem.2021.07.029
Ryu H.H., Park G.T., Yoon C.S., Sun Y.K., J Mater Chem A Mater, 2019, 7, 18580–18588. DOI: https://doi.org/10.1039/C9TA06402H. DOI: https://doi.org/10.1039/C9TA06402H
Hao Q., Du F., Xu T., Zhou Q., Cao H., Fan Z., et al., Journal of Electroanalytical Chemistry, 2022, 907, 116034. DOI: https://doi.org/10.1016/j.jelechem.2022.116034. DOI: https://doi.org/10.1016/j.jelechem.2022.116034
Goonetilleke D., Mazilkin A., Weber D., Ma Y., Fauth F., Janek J., et al., J Mater Chem A Mater, 2022, 10, 7841–7855. DOI: https://doi.org/10.1039/D1TA10568J. DOI: https://doi.org/10.1039/D1TA10568J
Zhang F., Zhou X., Fu X., Wang C., Wang B., Liang W., et al., Mater Today Energy, 2021, 22, 100873. DOI: https://doi.org/10.1016/j.mtener.2021.100873. DOI: https://doi.org/10.1016/j.mtener.2021.100873
Li J., Cameron A.R., Li H., Glazier S., Xiong D., Chatzidakis M., et al., J Electrochem Soc, 2017, 164, A1534–A1544. DOI: https://doi.org/10.1149/2.0991707jes. DOI: https://doi.org/10.1149/2.0991707jes
Balodhi A., Kim M.G., Crystals (Basel), 2024, 14, 288. DOI: https://doi.org/10.3390/cryst14030288. DOI: https://doi.org/10.3390/cryst14030288
Kawamata S., Okuda K., Kindo K., J Magn Magn Mater, 2004, 272–276, 939–940. DOI: https://doi.org/10.1016/j.jmmm.2003.12.579. DOI: https://doi.org/10.1016/j.jmmm.2003.12.579
Hausbrand R., Cherkashinin G., Ehrenberg H., Gröting M., Albe K., Hess C., et al., Materials Science and Engineering: B, 2015, 192, 3–25. DOI: https://doi.org/10.1016/j.mseb.2014.11.014. DOI: https://doi.org/10.1016/j.mseb.2014.11.014
Minato T., Abe T., Prog Surf Sci, 2017, 92, 240–280. DOI: https://doi.org/10.1016/j.progsurf.2017.10.001. DOI: https://doi.org/10.1016/j.progsurf.2017.10.001
Xin F., Zhou H., Chen X., Zuba M., Chernova N., Zhou G., et al., ACS Appl Mater Interfaces, 2019, 11, 34889–34894. DOI: https://doi.org/10.1021/acsami.9b09696. DOI: https://doi.org/10.1021/acsami.9b09696
Takada K., Ohta N., Zhang L., Fukuda K., Sakaguchi I., Ma R., et al., Solid State Ion, 2008, 179, 1333–1337. DOI: https://doi.org/10.1016/j.ssi.2008.02.017. DOI: https://doi.org/10.1016/j.ssi.2008.02.017
Li X., Jin L., Song D., Zhang H., Shi X., Wang Z., et al., Journal of Energy Chemistry, 2020, 40, 39–45. DOI: https://doi.org/10.1016/j.jechem.2019.02.006. DOI: https://doi.org/10.1016/j.jechem.2019.02.006


Downloads
Published
Issue
Section
License
Copyright (c) 2024 B.A. García-Carrillo, A de J Martínez, E. L. Jiménez-Cabañas, MA Martínez-Cruz, C. Juárez-Yescas, G. Ramos-Sánchez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
