Quantum Computational Chemistry and Optoelectronic Properties of a New Synthesis Organic Compound

Authors

  • Hiwa Mohammad Qadr University of Rparin
  • Dyari Mustafa Mamand
  • Dara Muhammed Aziz
  • Awat Hamad Awla

DOI:

https://doi.org/10.29356/jmcs.v68i3.1946

Keywords:

13C NMR, 1H NMR, FTIR, UV-visible spectrum, C16H13N3O3S2

Abstract

Abstract. For useful photovoltaic technology applications, organic materials with interesting electrical and optoelectronic properties are in great demand. Research on synthetic small organic molecules has gained great attraction for their potential applications in low-cost, ultra-thin and flexible commodities. They are also expected to play a transformative role in life today.  4-((2-hydroxy benzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide produced by using many important identification tools such as 13C NMR, 1H NMR, FTIR and UV-visible spectrum. In this study, there are some parameters such as band gap energy, refractive index, reflectivity, dielectric constant, electrical and optical conductivity to find suitable applications such as solar cells and photovoltaics. Based on quantum computational chemistry, HOMO, LUMO, band gap energy, ionization energy, softness, hardness, electronegativity, electrophilicity, nucleophilicity, electron transfer and back donation energy were calculated by using DFT at the (B3LYP/6-311++G(d, p)) level.

 

Resumen. Para la aplicación útil en tecnologías fotovoltaicas se requiere de materiales orgánicos con propiedades eléctricas y optoelectrónicas específicas. La investigación de moléculas orgánicas pequeñas ha ganado interés por sus aplicaciones potenciales como materias primas ultradelgadas y flexibles. También se espera que jueguen un papel transformador en la vida cotidiana. Se estudió el 4-((2-hidroxibencilidén) amino)-N-(thiazol-2-il) bencénesulfonamida con varias espectroscopías tales como 13C NMR, 1H NMR, FTIR y UV-visible. Para la aplicación de estos compuestos en celdas solares y dispositivos fotovoltaícos es necesario conocer parámetros como la brecha o gap de energía, el índice de refracción, la constante dieléctrica, y las conductividades eléctricas y ópticas. Utilizando la DFT con la metodología B3LYP/6-311++G(d, p), se calcularon las siguientes propiedades: energías del HOMO y LUMO, brecha (gap) HOMO-LUMO, primer potencial de ionización, blandura, dureza, electronegatividad, electrofilicidad, nucleofilicidad, transferencia electrónica y retrodonación.

Downloads

Download data is not yet available.

Author Biographies

Dyari Mustafa Mamand

University of Raparin, College of Science, Department of Physics, Sulaymaniyah, Iraq

Dara Muhammed Aziz

University of Raparin, College of Science, Department of Physics, Sulaymaniyah, Iraq

Awat Hamad Awla

University of Raparin, College of Science, Department of Chemistry, Sulaymaniyah, Iraq

References

Forrest, S.R. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1072-1083. DOI: https://doi.org/10.1109/2944.902156. DOI: https://doi.org/10.1109/2944.902156

Yakuphanoglu, F.; Şenkal, B. J. Phys. Chem. C. 2007, 111, 1840-1846. DOI: https://doi.org/10.1021/jp0653050. DOI: https://doi.org/10.1021/jp0653050

Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Adv. Energy Mater. 2018, 8, 1802585. DOI: https://doi.org/10.1002/aenm.201802585. DOI: https://doi.org/10.1002/aenm.201802585

Qadr, H.M. At. Indones. 2020, 46, 47-51. DOI: https://doi.org/10.17146/aij.2020.923. DOI: https://doi.org/10.17146/aij.2020.923

Liu, C.; Cheng, Y.-B.; Ge, Z. Chem. Soc. Rev. 2020, 49, 1653-1687. DOI: https://doi.org/10.1039/C9CS00711C. DOI: https://doi.org/10.1039/C9CS00711C

Qadr, H.M. Russ. J. Non-Ferr. 2021, 62, 561-567. DOI: https://doi.org/10.3103/S1067821221050096. DOI: https://doi.org/10.3103/S1067821221050096

Brabec, C.J.; Sariciftci, N.S.; Hummelen, J.C. Adv. Funct. Mater. 2001, 11, 15-26. DOI: https://doi.org/10.1002/1616-3028(200102)11:1%3C15::AID-ADFM15%3E3.0.CO;2-A. DOI: https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.3.CO;2-1

Dennler, G.; Sariciftci, N.S. Proc. IEEE. 2005, 93, 1429-1439. DOI: https://doi.org/10.1109/JPROC.2005.851491. DOI: https://doi.org/10.1109/JPROC.2005.851491

Nakano, K.; Tajima, K. Adv. Mater. 2017, 29, 1603269. DOI: https://doi.org/10.1002/adma.201603269. DOI: https://doi.org/10.1002/adma.201603269

Mamand, D.M.; Qadr, H.M. Corros. Rev. 2023, 41, 427-441. DOI: https://doi.org/10.1515/corrrev-2022-0085. DOI: https://doi.org/10.1515/corrrev-2022-0085

Ozpineci, B.; Tolbert, L.M. in: Comparison of wide-bandgap semiconductors for power electronics applications, United States. Department of Energy, 2004. DOI: https://doi.org/10.2172/885849

Elasser, A.; Chow, T.P. Proc. IEEE. 2002, 90, 969-986. DOI: https://doi.org/10.1109/JPROC.2002.1021562. DOI: https://doi.org/10.1109/JPROC.2002.1021562

Mamand, D.M.; Anwer, T.M.K.; Qadr, H.M. J. Indian Chem. Soc. 2023, 100, 101018. DOI: https://doi.org/10.1016/j.jics.2023.101018. DOI: https://doi.org/10.1016/j.jics.2023.101018

Iacopi, F.; Van Hove, M.; Charles, M.; Endo, K. Mrs Bull. 2015, 40, 390-395. DOI: https://doi.org/10.1557/mrs.2015.71. DOI: https://doi.org/10.1557/mrs.2015.71

Neudeck, P.G.; Okojie, R.S.; Chen, L.-Y. Proc. IEEE. 2002, 90, 1065-1076. DOI: https://doi.org/10.1109/JPROC.2002.1021571. DOI: https://doi.org/10.1109/JPROC.2002.1021571

Reich, B.; Hakim, E.B. Microelectron. Reliab. 1976, 15, 29-33. DOI: https://doi.org/10.1016/0026-2714(76)90138-4. DOI: https://doi.org/10.1016/0026-2714(76)90138-4

Torres, R.A.; Dai, H.; Lee, W.; Jahns, T.M.; Sarlioglu, B. in: 2018 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, 2018, 1002-1008.

Shi, J.; Zhang, J.; Yang, L.; Qu, M.; Qi, D.-C.; Zhang, K.H. Adv. Mater. 2021, 33, 2006230. DOI: https://doi.org/10.1002/adma.202006230. DOI: https://doi.org/10.1002/adma.202006230

Nunn, W.; Truttmann, T.K.; Jalan, B. J. Mater. Res. 2021, 1-19. DOI: https://doi.org/10.1557/s43578-021-00377-1. DOI: https://doi.org/10.1557/s43578-021-00377-1

Wang, P.; Xiao, H.; Duan, C.; Wen, B.; Li, Z. Polym. Degrad. Stab. 2020, 173, 109078. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109078. DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109078

Gündüz, M.G.; Tahir, M.N.; Armaković, S.; Koçak, C.Ö.; Armaković, S.J. J. Mol. Struct. 2019, 1186, 39-49. DOI: https://doi.org/10.1016/j.molstruc.2019.03.010. DOI: https://doi.org/10.1016/j.molstruc.2019.03.010

Aziz, D.M.; Azeez, H.J. J. Mol. Struct. 2020, 1222, 128904. DOI: https://doi.org/10.1016/j.molstruc.2020.128904. DOI: https://doi.org/10.1016/j.molstruc.2020.128904

Hussein, M.; Nasir, E.; Al-Aarajiy, A. Int. J. Thin Film Sci. Tec. 2012, 1, 71-76.

Ajayaghosh, A. Chem. Soc. Rev. 2003, 32, 181-191. DOI: https://doi.org/10.1039/B204251G. DOI: https://doi.org/10.1039/B204251G

Mamand, D.M.; Anwer, T.M.K.; Qadr, H.M. Oxid. Commun. 2022, 45, 600-627.

Mamand, D.M.; Qadr, H.M. Prot. Met. Phys. Chem. 2021, 57, 943-953. DOI: https://doi.org/10.1134/S207020512105018X. DOI: https://doi.org/10.1134/S207020512105018X

Orek, C.; Gündüz, B.; Kaygili, O.; Bulut, N. Chem. Phys. Lett. 2017, 678, 130-138. DOI: https://doi.org/10.1016/j.cplett.2017.04.050. DOI: https://doi.org/10.1016/j.cplett.2017.04.050

Sassi, M.; Oueslati, A.; Moutia, N.; Khirouni, K.; Gargouri, M. Ionics. 2017, 23, 847-855. DOI: https://doi.org/10.1007/s11581-016-1903-y. DOI: https://doi.org/10.1007/s11581-016-1903-y

Mamand, D.M.; Qadr, H.M. Russ. J. Phys. Chem. A. 2022, 96, 2155-2165. DOI: https://doi.org/10.1134/S0036024422100193. DOI: https://doi.org/10.1134/S0036024422100193

Epstein, R.; Sheik-Bahae, M.; Hehlen, M. in: Science and Applications of Laser Cooling of Solids., Wiley. 2009. DOI: https://doi.org/10.1002/9783527628049, DOI: https://doi.org/10.1002/9783527628049

Turan, N.; Kaya, E.; Gündüz, B.; Çolak, N.; Körkoca, H. Fibers Polym. 2012, 13, 415-424. DOI: https://doi.org/10.1007/s12221-012-0415-2, DOI: https://doi.org/10.1007/s12221-012-0415-2

Tripathy, S. Opt. Mater. 2015, 46, 240-246. DOI: https://doi.org/10.1016/j.optmat.2015.04.026. DOI: https://doi.org/10.1016/j.optmat.2015.04.026

Brust, D.; Phillips, J.; Bassani, F. Phys. Rev. Lett. 1962, 9, 94. DOI: https://doi.org/10.1103/PhysRevLett.9.94. DOI: https://doi.org/10.1103/PhysRevLett.9.94

Mamand, D.M.; Anwer, T.M.K.; Qadr, H.M.; Mussa, C.H. Russ. J. Gen. Chem. 2022, 92, 1827-1838. DOI: https://doi.org/10.1134/S1070363222090249. DOI: https://doi.org/10.1134/S1070363222090249

Silveira, F.; Kurcbart, S. EPL. 2010, 90, 44004. DOI: https://doi.org/10.1209/0295-5075/90/44004. DOI: https://doi.org/10.1209/0295-5075/90/44004

Akinlami, J.; Olateju, I. in: Semicond. phys. quantum electron. optoelectron. 2012, 281-284.

Qadr, H.M.; Mamand, D.M. Azerbaijan Chem. J. 2023, 19-29. DOI: https://doi.org/10.32737/0005-2531-2023-2-19-29. DOI: https://doi.org/10.32737/0005-2531-2023-2-19-29

Gebhard, F. in: The Mott Metal-Insulator Transition. 1997, 1-48. DOI: https://doi.org/10.1007/3-540-14858-2_1. DOI: https://doi.org/10.1007/3-540-14858-2_1

Bade, W.L. J. Chem. Phys. 1957, 27, 1280-1284. DOI: https://doi.org/10.1063/1.1743991. DOI: https://doi.org/10.1063/1.1743991

Rajkumar, M.; Saravanabhavan, M.; Chandramohan, A. Opt. Mater. 2017, 72, 247-256. DOI: https://doi.org/10.1016/j.optmat.2017.06.011. DOI: https://doi.org/10.1016/j.optmat.2017.06.011

Koops, C. Phys. Rev. 1951, 83, 121. DOI: https://doi.org/10.1103/PhysRev.83.121. DOI: https://doi.org/10.1103/PhysRev.83.121

Qadr, H.M.; Mamand, D.M. J. Bio- Tribo-Corros. 2021, 7, 140. DOI: https://doi.org/10.1007/s40735-021-00566-9. DOI: https://doi.org/10.1007/s40735-021-00566-9

Mamand, D.M.; Qadr, H.M. Him. Fiz. Tehnol. Poverhni. 2023, 14, 159-172. DOI: http://jnas.nbuv.gov.ua/article/UJRN-0001412158. DOI: https://doi.org/10.15407/hftp14.02.159

Erdoğan, Ş.; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C. J. Mol. Struct. 2017, 1134, 751-761. DOI: https://doi.org/10.1016/j.molstruc.2017.01.037. DOI: https://doi.org/10.1016/j.molstruc.2017.01.037

Pearson, R.G. PNAS. 1986, 83, 8440-8441. DOI: https://doi.org/10.1073/pnas.83.22.8440. DOI: https://doi.org/10.1073/pnas.83.22.8440

Mamand, D.M.; Awla, A.H.; Anwer, T.M.K.; Qadr, H.M. Chim. Techno Acta. 2022, 9, 20229203. DOI: https://doi.org/10.15826/chimtech.2022.9.2.03. DOI: https://doi.org/10.15826/chimtech.2022.9.2.03

×

Downloads

Published

2024-06-14

Issue

Section

Regular Articles
x

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...