Potential Compounds Interacting in a Specific Potential Site in SARS-CoV-2 Variants, Selected by Molecular Docking

Authors

  • Claudia Guadalupe Benítez-Cardoza Laboratorio de Investigación Bioquímica, ENMyH-Instituto Politécnico Nacional, Ciudad de México, México
  • Jesús Néstor Ramirez-Torres Laboratorio de Investigación Bioquímica, ENMyH-Instituto Politécnico Nacional, Ciudad de México, México
  • José Luis Vique-Sánchez Facultad de Medicina; Universidad Autónoma de Baja California; Mexicali

DOI:

https://doi.org/10.29356/jmcs.v66i4.1805

Keywords:

S-protein, RBD, COVID-19, SARS-CoV-2 variants

Abstract

Abstract. The SARS-CoV-2 virus continues developing variants, and different ways of treatments have been proposed during this COVID-19 pandemic. This study proposes compounds to develop a drug against SARS-CoV-2 variants, by molecular docking using a library of compounds (502530 compounds) directed to interact in the region between the amino acids (Ser477, Lys478, Pro479, Cys480, Asn481, Gly482, Val483, Lys484, Gly485, Phe486, Asn487, Cys488, and Tyr489) in the RBD in S-Protein of SARS-CoV-2, this is a specific potential site in SARS-CoV-2 variants.

We propose ten compounds selected by molecular docking, with a high probability to interact in the specific region in the RBD of SARS-CoV-2 variants (amino acids between 478 and 484), to reduce the interaction between S-protein and ACE2. Also, these compounds have a high probability to be safe in humans, validated by web servers of prediction of ADME and toxicity (PreADMET) to develop a new specific adjuvant antiviral against SARS-CoV-2 variants.

 

Resumen. El virus SARS-CoV-2 continúa desarrollando variantes y se han propuesto diferentes formas de tratamiento durante esta pandemia de COVID-19. Este estudio propone compuestos para desarrollar un fármaco contra las variantes del SARS-CoV-2, mediante simulaciones de acoplamiento molecular (docking) utilizando una quimioteca de compuestos (502530 compuestos) dirigidos a interactuar en la región entre los aminoácidos (Ser477, Lys478, Pro479, Cys480, Asn481, Gly482, Val483, Lys484, Gly485, Phe486, Asn487, Cys488 y Tyr489) en la RBD en la proteína S del SARS-CoV-2, este es un sitio potencial específico en las variantes del SARS-CoV-2.

Proponemos diez compuestos seleccionados por docking, con una alta probabilidad de interactuar en la región específica en la RBD de las variantes del SARS-CoV-2 (aminoácidos entre 478 y 484), para reducir la interacción entre la proteína S y ACE2. Además, estos compuestos tienen una alta probabilidad de ser seguros en humanos, validados por servidores web de predicción de ADME y toxicidad (PreADMET) para desarrollar un nuevo antiviral adyuvante específico contra variantes del SARS-CoV-2.

Downloads

Download data is not yet available.

References

University, J.H. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html, accessed in July 2022.

Conti, P.; Caraffa, A.; Gallenga, C.E.; Kritas, S. K.; Frydas, I.; Younes, A.; Di Emidio, P.; Tetè, G.; Pregliasco, F.; Ronconi, G. J. Biol. Regul. Homeost. Agents. 2021, 35.

Santos, J. C.; Passos, G. A. bioRxiv. 2021. DOI: 10.1101/2020.12.29.424708. DOI: https://doi.org/10.1101/2020.12.29.424708

Luan, B.; Wang, H.; Huynh, T. bioRxiv. 2021. DOI: 10.1101/2021.01.04.425316. DOI: https://doi.org/10.1101/2021.01.04.425316

Aljindan, R.Y.; Al-Subaie, A.M.; Al-Ohali, A.I.; Kumar D, T.; Doss C, G.P.; Kamaraj, B. Comput. Biol. Med. 2021, 135, 104654. DOI: 10.1016/j.compbiomed.2021.104654. DOI: https://doi.org/10.1016/j.compbiomed.2021.104654

Focosi, D.; Maggi, F.; Franchini, M.; McConnell, S.; Casadevall, A. Int. J. Mol. Sci. 2021, 23, 29. DOI: 10.3390/ijms23010029.

Verma, J.; Subbarao, N. Virology. 2021, 561, 107–116. DOI: 10.1016/j.virol.2021.06.009. DOI: https://doi.org/10.1016/j.virol.2021.06.009

Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Cell Res. 2020, 30, 269–271. DOI: 10.1038/s41422-020-0282-0. DOI: https://doi.org/10.1038/s41422-020-0282-0

Sheahan, T. P.; Sims, A. C.; Leist, S. R.; Schäfer, A.; Won, J.; Brown, A. J.; Montgomery, S. A.; Hogg, A.; Babusis, D.; Clarke, M. O.; et al. Nat. Commun. 2020, 11, 222. DOI: 10.1038/s41467-019-13940-6. DOI: https://doi.org/10.1038/s41467-019-13940-6

Li, G.; De Clercq, E. Nat. Rev. Drug Discov. 2020, 19, 149–150. DOI: 10.1038/d41573-020-00016-0. DOI: https://doi.org/10.1038/d41573-020-00016-0

Iftikhar, H.; Ali, H. N.; Farooq, S.; Naveed, H.; Shahzad-ul-Hussan, S. Comput. Biol. Med. 2020, 122, 103848. DOI: 10.1016/j.compbiomed.2020.103848. DOI: https://doi.org/10.1016/j.compbiomed.2020.103848

Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; et al. Acta Pharm. Sin. B. 2020, 10, 766–788. DOI: 10.1016/j.apsb.2020.02.008. DOI: https://doi.org/10.1016/j.apsb.2020.02.008

Xia, S.; Yan, L.; Xu, W.; Agrawal, A.S.; Algaissi, A.; Tseng, C.-T. K.; Wang, Q.; Du, L.; Tan, W.; Wilson, I.A.; et al. Sci. Adv. 2019, 5, eaav4580. DOI: 10.1126/sciadv.aav4580. DOI: https://doi.org/10.1126/sciadv.aav4580

Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; et al. Cell Res. 2020, 30, 343–355. DOI: 10.1038/s41422-020-0305-x. DOI: https://doi.org/10.1038/s41422-020-0305-x

Calligari, P.; Bobone, S.; Ricci, G.; Bocedi, A. Viruses. 2020, 12, 445. DOI: 10.3390/v12040445. DOI: https://doi.org/10.3390/v12040445

Huang, J.; Song, W.; Huang, H.; Sun, Q. J. Clin. Med. 2020, 9, 1131. DOI: 10.3390/jcm9041131. DOI: https://doi.org/10.3390/jcm9041131

Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S.P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; et al. ACS Cent. Sci. 2020, 6, 315–331. DOI: 10.1021/acscentsci.0c00272. DOI: https://doi.org/10.1021/acscentsci.0c00272

Locht, C. Anaesth. Crit. Care Pain Med. 2020, 39, 703–705. DOI: 10.1016/j.accpm.2020.10.006. DOI: https://doi.org/10.1016/j.accpm.2020.10.006

Kim, K.-D.; Hwang, I.; Ku, K. B.; Lee, S.; Kim, S.-J.; Kim, C. J. Microbiol. Biotechnol. 2020, 30, 1109–1115. DOI: 10.4014/jmb.2006.06006. DOI: https://doi.org/10.4014/jmb.2006.06006

Barton, M. I.; MacGowan, S. A.; Kutuzov, M. A.; Dushek, O.; Barton, G. J.; van der Merwe, P.A. Elife. 2021, 10. DOI: 10.7554/eLife.70658. DOI: https://doi.org/10.7554/eLife.70658

Li, C.; Tian, X.; Jia, X.; Wan, J.; Lu, L.; Jiang, S.; Lan, F.; Lu, Y.; Wu, Y.; Ying, T. Signal Transduct. Target. Ther. 2021, 6, 132. DOI: 10.1038/s41392-021-00536-0. DOI: https://doi.org/10.1038/s41392-021-00536-0

Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Science. 2005, 309, 1864–8. DOI: 10.1126/science.1116480. DOI: https://doi.org/10.1126/science.1116480

Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Science (80-.). 2020, eabb2762. DOI: 10.1126/science.abb2762. DOI: https://doi.org/10.1126/science.abb2762

Rui, L.; Haonan, L.; Wanyi, C. Biophys. Chem. 2020, 267, 106472. DOI: 10.1016/j.bpc.2020.106472. DOI: https://doi.org/10.1016/j.bpc.2020.106472

Vique‐Sánchez, J. L. Biointerface Res. Appl. Chem. 2021, 12, 5234–5265. DOI: 10.33263/BRIAC124.52345265. DOI: https://doi.org/10.33263/BRIAC124.52345265

de Oliveira, O. V.; Rocha, G. B.; Paluch, A. S.; Costa, L.T. J. Biomol. Struct. Dyn. 2021, 39, 3924–3933. DOI: 10.1080/07391102.2020.1772885. DOI: https://doi.org/10.1080/07391102.2020.1772885

Pirolli, D.; Righino, B.; De Rosa, M. C. Mol. Inform. 2021, 40, 2060080. DOI: 10.1002/minf.202060080. DOI: https://doi.org/10.1002/minf.202060080

Wang, L.; Wu, Y.; Yao, S.; Ge, H.; Zhu, Y.; Chen, K.; Chen, W.; Zhang, Y.; Zhu, W.; Wang, H.; et al. Acta Pharmacol. Sin. 2021. DOI: 10.1038/s41401-021-00735-z. DOI: https://doi.org/10.1038/s41401-021-00735-z

Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Cell. Mol. Immunol. 2020. DOI: 10.1038/s41423-020-0400-4. DOI: https://doi.org/10.1038/s41423-020-0400-4

Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. Nucleic Acids Res. 2018, 46, W296–W303. DOI: 10.1093/nar/gky427. DOI: https://doi.org/10.1093/nar/gky427

Swissmodel. https://swissmodel.expasy.org/, accessed in March 2022

RAMPAGE (RRID:SCR_017590). https://scicrunch.org/resolver/RRID:SCR_017590 , accessed in March 2022.

Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. J. Comput. Chem. 2009, 30, 1545–1614. DOI: 10.1002/jcc.21287. DOI: https://doi.org/10.1002/jcc.21287

Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519. DOI: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:6<490::AID-JCC1>3.3.CO;2-V

ChemBridge Corp. https://chembridge.com/screening_libraries/#EXPRESSPick, accessed in January 2022

Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Adv. Drug Deliv. Rev. 2001, 46, 3–26. DOI: https://doi.org/10.1016/S0169-409X(00)00129-0

Thangapandian, S.; John, S.; Lee, Y.; Kim, S.; Lee, K.W. Int. J. Mol. Sci. 2011, 12, 9440–9462. DOI: 10.3390/ijms12129440. DOI: https://doi.org/10.3390/ijms12129440

Vique-Sánchez, J. L. Bioorganic Med. Chem. 2021, 33. DOI: 10.1016/j.bmc.2021.116040. DOI: https://doi.org/10.1016/j.bmc.2021.116040

Benítez-Cardoza, C. G.; Vique-Sánchez, J. L. Life Sci. 2020, 117970. DOI: 10.1016/j.lfs.2020.117970. DOI: https://doi.org/10.1016/j.lfs.2020.117970

Soga, S.; Shirai, H.; Kobori, M.; Hirayama, N. J. Chem. Inf. Model. 2007, 47, 400–406. DOI: 10.1021/ci6002202. DOI: https://doi.org/10.1021/ci6002202

Naïm, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al. J. Chem. Inf. Model. 2007, 47, 122–133. DOI: 10.1021/ci600406v. DOI: https://doi.org/10.1021/ci600406v

Labute, P. J. Comput. Chem. 2008, 29, 1693–8. DOI: 10.1002/jcc.20933. DOI: https://doi.org/10.1002/jcc.20933

Wadood, A.; Ghufran, M.; Hassan, S.F.; Khan, H.; Azam, S.S.; Rashid, U. Pharm. Biol. 2017, 55, 19–32. DOI: 10.1080/13880209.2016.1225778. DOI: https://doi.org/10.1080/13880209.2016.1225778

acdlabs. https://www.acdlabs.com/products/percepta/index.php, accessed in March 2022

PreADMET. https://preadmet.bmdrc.kr/toxicity/, accessed in March 2022

Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R. H.; Peters, B.; Sette, A. Cell Host Microbe. 2020. DOI: 10.1016/j.chom.2020.03.002. DOI: https://doi.org/10.1016/j.chom.2020.03.002

Ton, A.-T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Mol. Inform. 2020, minf.202000028. DOI: 10.1002/minf.202000028. DOI: https://doi.org/10.1002/minf.202000028

Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Science (80-.). 2020, eabb3405. DOI: 10.1126/science.abb3405. DOI: https://doi.org/10.1126/science.abb3405

Khelfaoui, H.; Harkati, D.; Saleh, B. A. J. Biomol. Struct. Dyn. 2020, 1–17. DOI: 10.1080/07391102.2020.1803967. DOI: https://doi.org/10.1080/07391102.2020.1803967

Focosi, D.; Maggi, F.; Franchini, M.; McConnell, S.; Casadevall, A. Int. J. Mol. Sci. 2021, 23, 29. DOI: 10.3390/ijms23010029. DOI: https://doi.org/10.3390/ijms23010029

Spinello, A.; Saltalamacchia, A.; Magistrato, A. J. Phys. Chem. Lett. 2020, 11, 4785–4790. DOI: 10.1021/acs.jpclett.0c01148. DOI: https://doi.org/10.1021/acs.jpclett.0c01148

Han, D. P.; Penn-Nicholson, A.; Cho, M. W. Virology. 2006, 350, 15–25. DOI: 10.1016/j.virol.2006.01.029. DOI: https://doi.org/10.1016/j.virol.2006.01.029

Vique-Sánchez, J. L.; Caro-Gómez, L. A.; Brieba, L. G.; Benítez-Cardoza, C. G. Parasitol. Int. 2020. DOI: 10.1016/j.parint.2020.102086. DOI: https://doi.org/10.1016/j.parint.2020.102086

Vique‐Sánchez, J. L.; Jiménez‐Pineda, A.; Benítez‐Cardoza, C. G. Arch. Pharm. (Weinheim). 2020. DOI: 10.1002/ardp.202000263. DOI: https://doi.org/10.1002/ardp.202000263

Benítez-Cardoza, C. G.; Fernández-Velasco, D.A.; Vique-Sánchez, J. L. ChemistrySelect. 2020. DOI: 10.1002/slct.201904632. DOI: https://doi.org/10.1002/slct.201904632

Arroyo-Verástegui, R.; Ortega-López, J.; Benítez-Cardoza, C.; Vique-Sánchez, J. L.; Brieba de castro, L. G.; Rojo-Domínguez, A.; García-Gutiérrez, P. El uso de 5,5´- [(4-nitrofenil)-metilen]bis(6-hidroxi-2-mercapto-3-metil-4(3H)-pirimidinonaTIM como tricomonicida. 2016.

ADMETlab. http://admet.scbdd.com/calcpre/index_sys/, accessed in March 2022.

×

Downloads

Additional Files

Published

2022-10-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Loading...