Magnetic Solid-Phase Extraction using Ionic Liquid-Modified Magnetic Nanoparticles for The Simultaneous Extraction of Cadmium and Lead in Milk Samples; Evaluation of Measurement Uncertainty

Authors

  • Sara Khodadadi Islamic Azad University
  • Elaheh Konoz Islamic Azad University
  • Ali Ezabadi Islamic Azad University
  • Ali Niazi Islamic Azad University https://orcid.org/0000-0002-0894-532X

DOI:

https://doi.org/10.29356/jmcs.v65i4.1473

Keywords:

Pb (II) and Cd (II) analysis, ionic liquid, magnetic solid-phase extraction, measurement uncertainty, milk samples

Abstract

Abstract. In the present study, a new, sensitive, and rapid method was developed for extraction and determination of the trace amounts of Pb (II) and Cd (II) ions in milk samples through magnetic solid-phase extraction using DABCO based-ionic liquid-modified magnetic nanoparticles (Fe3O4/[DABCO-PDO]Cl NPs). Herein, Pb (II) and Cd (II) contents were quantified with flame atomic absorption spectroscopy (FAAS). The effect of different empirical parameters (such as sample pH, adsorbent amount, type and amount of the elution, extraction and desorption times, and the ligand concentration) was evaluated and optimized for simultaneous extraction and pre-concentration Pb (II) and Cd (II) ions. The calibration curve was linear under the optimum condition in the concentration range of 0.4-200 µgL-1 for Cd, and 0.5-120 µgL-1 for Pb, respectively. The pre-concentration factor was 67, with the detection limit of 0.09 and 0.07 µgL-1 for Pb and Cd, respectively. The relative standard deviation values (RSD %) of the proposed method were lower than 2.6 %. The developed method was successfully used to determine lead and cadmium content in milk samples. The information obtained from the method validation has been used to estimate the expanded uncertainty for the determination of Pb (II) and Cd (II) at trace levels in commercial milks.

 

Resumen. En este trabajo, se ha desarrollado un nuevo, sensible y rápido procedimiento para la extracción y determinación de iones Pb(II) y Cd(II) a nivel de trazas en leche, mediante extracción en fase sólida utilizando nanopartículas magnéticas modificadas con líquido iónico basado en DABCO (Fe3O4/[DABCO-PDO]Cl NPs). La determinación de ambos metales se llevó a cabo por espectrometría de absorción atómica con atomización en llama. Se ha evaluado el efecto de diferentes parámetros empíricos (tales como pH, cantidad de adsorbente, tipo y cantidad de solvente de elución, tiempo de extracción y desorción, y concentración del ligando); estos parametros fueron optimizados enfocándose en la extracción y preconcentración simultanea de ambos iones. Empleando las condiciones establecidas, se obtuvo buena linealidad de las curvas de calibración en el intervalo de concentraciones 0.4-200 µgL-1 para Cd, y 0.5-120 µgL-1 para Pb, respectivamente. Se logró el factor de preconcentración 67, con los límites de detección 0.09 y 0.07 µgL-1 para Pb y Cd, respectivamente. Los valores de desviación estandar relativa (RSD %) en el procedimiento propuesto no sobrepasaron 2.6 %. En el análisis de leche, se obtuvieron resultados satisfactorios. Los datos obtenidos en etapa de validación se utilizaron para estimar la incertidumbre expandida en la determinación de Pb y Cd a nivel de trazas en leche.

Downloads

Download data is not yet available.

Author Biographies

Sara Khodadadi, Islamic Azad University

Department of Chemistry, Central Tehran Branch.

Elaheh Konoz, Islamic Azad University

Department of Chemistry, Central Tehran Branch.

Ali Ezabadi, Islamic Azad University

Department of Chemistry, Central Tehran Branch.

Ali Niazi, Islamic Azad University

Department of Chemistry, Central Tehran Branch.

References

Taher, M. A.; Daliri, Z.; Fazelirad, H. Chin. Chem. Lett. 2014, 25, 649-654. DOI: https://doi.org/10.1016/j.cclet.2013.12.025

Lin, H.-T.; Wong, S.-S.; Li, G.-C. J. Food Drug Anal. 2004, 12, 167-174.

Muhammad, S.; Shah, M. T.; Khan, S. Microchem. J. 2011, 98, 334-343. DOI: https://doi.org/10.1016/j.microc.2011.03.003

Mohod, C. V.; Dhote, J. Intern. J. Innovative Res. Sci., Eng. Technol. 2013, 2, 2992-2996.

Shirkhanloo, H.; Sedighi, K.; Zavvar Mousavi, H. J. Mex. Chem. Soc. 2014, 58, 137-141.

Ramezanpour, M.; Raeisi, S. N.; Shahidi, S.-A.; Ramezanpour, S.; Seidi, S. Anal. Biochem. 2019, 570, 5-12. DOI: https://doi.org/10.1016/j.ab.2019.01.008

Meshref, A. M. S.; Moselhy, W. A.; Hassan, N. E.-H. Y. J. Food Measurement Characterization. 2014, 8, 381-388. DOI: https://doi.org/10.1007/s11694-014-9203-6

Bischoff, K.; Higgins, W.; Thompson, B.; Ebel, J. G. Food Additives & Contaminants: Part A. 2014, 31, 839-844. DOI: https://doi.org/10.1080/19440049.2014.888787

Bak?rdere, S.; Yaro?lu, T.; T?r?k, N.; Demiröz, M.; Fidan, A. K.; Maruldal?, O.; Karaca, A. J. Spectrosc. 2013, 2013. DOI: https://doi.org/10.1155/2013/824817

Al-Rajhi, M. Am. J. Environ. Sci. 2014, 10, 283. DOI: https://doi.org/10.3844/ajessp.2014.283.288

Feist, B.; Mikula, B.; Pytlakowska, K.; Puzio, B.; Buhl, F. J. Hazard. Mater. 2008, 152, 1122-1129. DOI: https://doi.org/10.1016/j.jhazmat.2007.07.095

Trzcinka?Ochocka, M.; Brodzka, R.; Janasik, B. J. Clin. Lab. Anal. 2016, 30, 130-139. DOI: https://doi.org/10.1002/jcla.21826

Arpa, Ç.; Arida?ir, I. J. Anal. Methods Chem. 2018, 2018.

Wu, C. X.; Wu, Q. H.; Wang, C.; Wang, Z. Chin. Chem. Lett. 2011, 22, 473-476. DOI: https://doi.org/10.1016/j.cclet.2010.10.049

P?otka-Wasylka, J.; Szczepa?ska, N.; de la Guardia, M.; Namie?nik, J. TrAC, Trends Anal. Chem. 2016, 77, 23-43. DOI: https://doi.org/10.1016/j.trac.2015.10.010

Iwasaki, T.; Morikane, R.; Edura, T.; Tokuda, M.; Tsutsui, K.; Wada, Y.; Kawarada, H. Carbon. 2007, 45, 2351-2355. DOI: https://doi.org/10.1016/j.carbon.2007.07.013

Konoz, E.; Sarrafi, A. H.; Sahebi, H. Can. J. Chem. 2016, 94, 9-14. DOI: https://doi.org/10.1139/cjc-2015-0015

Khoshhesab, Z. M.; Mirzaie, A. Sep. Sci. Technol. 2016, 51, 1654-1663. DOI: https://doi.org/10.1080/01496395.2016.1168844

Niazi, A.; Torkman, M. D.; Khorshidi, N. J. Nanoanalysis. 2015, 2, 46-56.

Jiang, H.-L.; Li, N.; Cui, L.; Wang, X.; Zhao, R.-S. TrAC, Trends Anal. Chem. 2019, 120, 115632. DOI: https://doi.org/10.1016/j.trac.2019.115632

Bakheet, A.; Liu, J.; Zhu, X. J. Anal. Sci.Technol. 2016, 7, 4. DOI: https://doi.org/10.1186/s40543-016-0082-9

Tabrizi, A. B.; Teymurlouie, N. D. J. Mex. Chem. Soc. 2016, 60. DOI: https://doi.org/10.29356/jmcs.v60i4.105

Asfaram, A.; Ghaedi, M.; Goudarzi, A.; Soylak, M.; Mehdizadeh Langroodi, S. New J. Chem. 2015, 39, 9813-9823. DOI: https://doi.org/10.1039/C5NJ01730K

Besharati, N.; Alizadeh, N.; Shariati, S. J. Mex. Chem. Soc. 2018, 62. DOI: https://doi.org/10.29356/jmcs.v62i3.433

Sahebi, H.; Konoz, E.; Ezabadi, A.; Niazi, A.; Ahmadi, S. H. Microchem. J. 2020, 154, 104605. DOI: https://doi.org/10.1016/j.microc.2020.104605

Sahebi, H.; Pourmortazavi, S. M.; Zandavar, H.; Mirsadeghi, S. Analyst. 2019, 144, 7336-7350. DOI: https://doi.org/10.1039/C9AN01654F

Khan, N.; Kazi, T. G.; Afridi, H. I.; Arain, M. B. Anal. Lett. 2018, 51, 673-685. DOI: https://doi.org/10.1080/00032719.2017.1354868

Zare, A.; Khanivar, R.; Hatami, M.; Mokhlesi, M.; Zolfigol, M. A.; Moosavi-Zare, A. R.; Hasaninejad, A.; Khazaei, A.; Khakyzadeh, V. J. Mex. Chem. Soc. 2012, 56, 389-397.

Wang, H.; Zhang, H.; Wei, S.; Jia, Q. J. Chromatogr. A. 2018, 1566, 23-31. DOI: https://doi.org/10.1016/j.chroma.2018.06.053

Tripathi, A. K.; Verma, Y. L.; Singh, R. K. J. Mater. Chem. A. 2015, 3, 23809-23820. DOI: https://doi.org/10.1039/C5TA05090A

Liu, H.; Li, Z.; Takafuji, M.; Ihara, H.; Qiu, H. Food Chem. 2017, 229, 208-214. DOI: https://doi.org/10.1016/j.foodchem.2017.02.080

Sahebi, H.; Konoz, E.; Ezabadi, A.; Niazi, A.; Ahmadi, S. H. Chromatographia. 2020, 83, 1009-1019. DOI: https://doi.org/10.1007/s10337-020-03923-x

Rao, T. S.; Sridevi, M.; Naidu, C. G.; Nagaraju, B. J. Anal. Sci. Technol. 2019, 10, 20. DOI: https://doi.org/10.1186/s40543-019-0179-z

Liu, R.; Liu, Y.; Cheng, C.; Yang, Y. Sep. Sci.Technol. 2017, 52, 1787-1795. DOI: https://doi.org/10.1080/01496395.2017.1302479

Sahebi, H.; Konoz, E.; Ezabadi, A. New J. Chem. 2019, 43, 13554-13570. DOI: https://doi.org/10.1039/C9NJ02200G

Konieczka, P.; Namie?nik, J. J. Chromatogr. A. 2010, 1217, 882-891. DOI: https://doi.org/10.1016/j.chroma.2009.03.078

Boleda, M. R.; Galceran, M. T.; Ventura, F. J. Chromatogr. A. 2013, 1286, 146-158 DOI: https://doi.org/10.1016/j.chroma.2013.02.077

Ma, J.; Wang, Y.; Stafford, R. S. J. Adolescent Health 2005, 36, 441, e1-441- e7. DOI: https://doi.org/10.1016/j.jadohealth.2004.08.024

Taylor, B. N.; Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; United States Department of Commerce Technology Administration National Institute of Standards and Technology: U.S. Government Printing Office Washington, 1994.

Jiménez, Ó. P.; Pastor, R. M. P. Anal. Chim. Acta. 2012, 724, 20-29. DOI: https://doi.org/10.1016/j.aca.2012.02.050

Ellison, S. L.; Williams, A. EURACHEM/CITAC. 2000.

Naddafi, K.; Nabizadeh, R.; Saeedi, R.; Mahvi, A. H.; Vaezi, F.; Yaghmaeian, K.; Ghasri, A.; Nazmara, S. J. Hazard. Mater. 2007, 147, 785-791. DOI: https://doi.org/10.1016/j.jhazmat.2007.01.122

Durukan, ?.; ?ahin, Ç. A.; Bekta?, S. Microchem. J. 2011, 98, 215-219. DOI: https://doi.org/10.1016/j.microc.2011.02.001

Rezaee, M.; Yamini, Y.; Khanchi, A.; Faraji, M.; Saleh, A. J. Hazard. Mater. 2010, 178, 766-770. DOI: https://doi.org/10.1016/j.jhazmat.2010.02.006

Zhou, Q.; Ding, Y.; Xiao, J. Anal.Bioanaly. Chem. 2006, 385, 1520-1525. DOI: https://doi.org/10.1007/s00216-006-0554-7

Buczkowska, M.; Bodtke, A.; Lindequist, U.; Gdaniec, M.; Bednarski, P. J. Arch. Pharm. 2011, 344, 605-616. DOI: https://doi.org/10.1002/ardp.201100101

El-Medani, S. M.; Ali, O. A. M.; Mohamed, H. A.; Ramadan, R. M. J. Coord. Chem. 2005, 58, 1429-1437. DOI: https://doi.org/10.1080/00958970500156761

Barszcz, B.; Masternak, J.; Hodorowicz, M.; Jab?o?ska-Wawrzycka, A. J. Therm. Anal. Calorim. 2012, 108, 971-978. DOI: https://doi.org/10.1007/s10973-011-2137-x

Soylak, M.; Yilmaz, E.; Ghaedi, M.; Montazerozohori, M. Toxicol. Environ. Chem. 2011, 93, 873-885. DOI: https://doi.org/10.1080/02772248.2011.572885

Gouda, A. A.; Al Ghannam, S. M. Food Chem. 2016, 202, 409-416. DOI: https://doi.org/10.1016/j.foodchem.2016.02.006

Gouda, A. A. Intern. J. Environ. Anal. Chem.. 2014, 94, 1210-1222. DOI: https://doi.org/10.1080/03067319.2014.930846

Alothman, Z. A.; Yilmaz, E.; Habila, M.; Soylak, M. Ecotoxicol. Environ. Saf. 2015, 112, 74-79. DOI: https://doi.org/10.1016/j.ecoenv.2014.10.032

ALOthman, Z. A.; Yilmaz, E.; Habila, M. A.; Alsohaimi, I. H.; Aldawsari, A. M.; AL-Harbi, N. M.; Soylak, M. RSC Advances. 2015, 5, 106905-106911. DOI: https://doi.org/10.1039/C5RA19213G

Gouda, A. A.; Amin, A. H.; Ali, I. S.; Al Malah, Z. Curr. Anal. Chem. 2020, 16, 381-392. DOI: https://doi.org/10.2174/1573411014666180619145236

×

Downloads

Published

2021-09-23

Issue

Section

Regular Articles
x

Similar Articles

<< < 35 36 37 38 39 40 41 42 > >> 

You may also start an advanced similarity search for this article.

Loading...