Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells

Authors

  • Hamed Moeini Alishah Yildiz Technical University
  • Fatma Pinar Gokdemir Choi Yildiz Technical University
  • Ugur Deneb Menda Universidade NOVA de Lisboa and CEMOP
  • Cihangir Kahveci Yildiz Technical University
  • Macide Canturk Rodop Yildiz Technical University
  • Manuel J. Mendes Universidade NOVA de Lisboa and CEMOP
  • Serap Gunes Yildiz Technical University

DOI:

https://doi.org/10.29356/jmcs.v65i2.1461

Keywords:

Bathocuproine, hole-blocking layer, electron transport layer, planar structure

Abstract

Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag. 

Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.

Downloads

Download data is not yet available.

Author Biographies

Hamed Moeini Alishah, Yildiz Technical University

Faculty of Arts and Science, Department of Physics, Davutpasa Campus

Fatma Pinar Gokdemir Choi, Yildiz Technical University

Faculty of Arts and Science, Department of Physics, Davutpasa Campus

Ugur Deneb Menda, Universidade NOVA de Lisboa and CEMOP

i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology,

Cihangir Kahveci, Yildiz Technical University

Faculty of Arts and Science, Department of Physics, Davutpasa Campus

Macide Canturk Rodop, Yildiz Technical University

Faculty of Arts and Science, Department of Physics, Davutpasa Campus

Manuel J. Mendes, Universidade NOVA de Lisboa and CEMOP

i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology

Serap Gunes, Yildiz Technical University

Faculty of Arts and Science, Department of Physics, Davutpasa Campus

References

Chen, H.; Yang, S. Adv. Mater. 2017, 29, 1603994. DOI: https://doi.org/10.1002/adma.201770143

Shin, G. S.; Choi, W.-G.; Na, S.; Gokdemir, F. P.; Moon, T. Electron.. Mater. Lett. 2018, 14, 155-160 DOI: https://doi.org/10.1007/s13391-018-0042-1

Huanping, Z.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542-546. DOI: https://doi.org/10.1126/science.1254050

Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, 6283. DOI: https://doi.org/10.1126/science.aad4424

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science, 2012, 338, 643-647. DOI: https://doi.org/10.1126/science.1228604

Brites, M. J.; Barreiros, M. A.; Corregidor, V.; Alves, L. C.; Pinto, J. V.; Mendes, M.J.; Fortunato, E.; Martins, R.; Mascarenhas, J. ACS Appl. Energy Mater. 2019, 2, 1844-1853. DOI: https://doi.org/10.1021/acsaem.8b02005

Laban, W. A.; Etgar, L. Energy Environ. Sci. 2013, 6, 3249-3253. DOI: https://doi.org/10.1039/c3ee42282h

Seigo, I. APL Mater. 2016, 4, 091504.

Jacoby, M. Chem. Eng. News 2016, 94, 30-35.

Miyasaka, T. Bull. Chem. Soc. Jpn 2018, 91, 1058-1068. DOI: https://doi.org/10.1246/bcsj.20180071

Wiley, A. D.-S.; Zhou, Y.; P. Padture, N.; Mitzi, D. B. Chem. Rev. 2018, 119, 3193-3295. DOI: https://doi.org/10.1021/acs.chemrev.8b00318

Alishah, H. M.; Kazici, M.; Ongul, F.; Bozar, S.; Canturk Rodop, M.; Kahveci,, C.; Arvas M. B.; Sahin, Y.; Gencten, M.; Kaleli, M.; Akyurekli, S.; Yilmaz, H. U.; Bayram, A. B.; Gunes, S. J. Mater. Sci.: Mater. Electr. 2020, 1-13.

Dericiler, K.; Alishah, H. M.; Bozar, S; Gunes, S; Kaya, F. Appl. Phys. A 2020, 126, 1-9. DOI: https://doi.org/10.1007/s00339-020-04091-3

Choi, F. P. G.; Alishah, H. M.; Bozar, S.; Doyranli, C.; Koyuncu, S.; San, N.; Kahveci, C.; Rodop, M. C.; Arvas, M. B.; Gencten, M.; Sahin, Y.; Gunes, S. Sol. Energy 2020, 209, 400-407. DOI: https://doi.org/10.1016/j.solener.2020.08.013

Chen, W.; Liu, F.?Z.; Feng, X.?Y.; Djuriši?, A. B.; Chan, W. K.; He, Z.?B. Adv. Energy Mater. 2017, 7,1700722. DOI: https://doi.org/10.1002/aenm.201770109

Sajid, S.; Elseman, A. M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Nano Energy 2018, 51, 408-424. DOI: https://doi.org/10.1016/j.nanoen.2018.06.082

Jeng, J.?Y.; Chiang, Y.?F.; Lee, M.?H.; Peng, S.?R.; Guo, T.?F.; Chen, P.; Ten?Chin, W. Adv. Mater. 2013, 25, 3727-3732. DOI: https://doi.org/10.1002/adma.201301327

Shibayama N.; Kanda H.; Kim T. W.; Segawa H.; Ito S. APL Materials, 2019, 7.3: 031117. DOI: https://doi.org/10.1063/1.5087796

Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W., RSC Adv. 2017, 7, 35819-35826.

Patil, B. R.; Ahmadpour, M.; Sherafatipour, G.; Qamar, T.; Fernández, A. F.; Zojer, K.; Rubahn, H.-G.; Madsen, M. Sci. Rep. 2018, 8, 1-9. DOI: https://doi.org/10.1038/s41598-018-30826-7

Seo, J.; Park, S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642-2646. DOI: https://doi.org/10.1039/C4EE01216J

Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. ACS Appl. Mater. Interfaces 2015, 7.11: 6230-6237. DOI: https://doi.org/10.1021/acsami.5b00468

Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. Nanoscale 2015, 7, 1642-1649. DOI: https://doi.org/10.1039/C4NR06033D

He, C.; Zhang, F.; Zhao, X.; Lin, C.; Ye, M. Front. Phys. 2018, 6, 99. DOI: https://doi.org/10.3389/fphy.2018.00099

Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 2359-2365. DOI: https://doi.org/10.1039/C4EE00233D

Hanmandlu, C.; Chen, C. Y.; Boopathi, K. M.; Lin, H. W.; Lai, C. S.; Chu, C. W. ACS Appl. Mater. Interfaces 2017, 9, 32635-32642. DOI: https://doi.org/10.1021/acsami.7b06607

Babaei, A.; Dreessen, C.; Sessolo, M.; Bolink, H. J. RSC Adv. 2020, 10, 6640-6646. DOI: https://doi.org/10.1039/D0RA00214C

Wang, Y.; Zhang, J.; Wu, Y.; Yi, Z.; Chi, F.; Wong, H.; Li, W.; Zhang, Y.; Zhang, X.; Liu, L. Semicond. Sci. Technol. 2019, 34, 075023. DOI: https://doi.org/10.1088/1361-6641/ab2309

Yuan, D. X.; Yuan , X. D.; Xu, Q. Y.; Xu, M. F.; Shi, X. B.; Wang, Z. K.; Liao, L. S. Phys. Chem. Chem. Phys. 2015, 17, 26653-26658. DOI: https://doi.org/10.1039/C5CP03995A

Di Girolamo, D.; Matteocci, F.; Lamanna, E.; Calabrò, E.; Di Carlo, A.; Dini, D. AIP Conf. Proc. 2018, 1990, 020011.

Wang, T.; Ding, D.; Zheng, H.; Wang, X.; Wang, J.; Liu, H.; Shen, W. Solar RRL, 2019, 3, 1900045. DOI: https://doi.org/10.1002/solr.201900045

Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. CS; Zhao, Y.; Burda, C. Dalton Trans. 2016, 45, 3806-3813. DOI: https://doi.org/10.1039/C5DT04420K

Leguy, A. M. A. ; Azarhoosh, P.; Alonso, M. I.; Campoy-Quiles, M.; Weber, O. J.; Yao, J.; Bryant, D; Weller, M..T; Nelson, J; Walsh, A; Schilfgaarde, M.V; Barnes, P.R.F. Nanoscale 2016, 8, 6317-6327. DOI: https://doi.org/10.1039/C5NR05435D

Quarti, C.; Mosconi, E.; Ball, J. M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; Angelis, F. D. Energy Environ. Sci. 2016, 9, 155-163. DOI: https://doi.org/10.1039/C5EE02925B

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051. DOI: https://doi.org/10.1021/ja809598r

Patel, J. B.; Milot, R. L.; Wright, A. D.; Herz, L. M.; Johnston, M. B. J. Phys. Chem. Lett. 2016, 7, 96-102. DOI: https://doi.org/10.1021/acs.jpclett.5b02495

Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; Johnston, M. B.; Giustino, F. J. Phys. Chem. C 2015, 119, 25703-25718. DOI: https://doi.org/10.1021/acs.jpcc.5b07432

Hu, H.; Kollek, T.; Hanusch, F.; Polarz, S.; Docampo, P.; Schmiidt-Mende, L. Molecules 2016, 21, 542. DOI: https://doi.org/10.3390/molecules21040542

Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W. RSC Adv. 2017, 7, 35819-35826. DOI: https://doi.org/10.1039/C7RA06365B

Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X; Wang, Z; Wang, J; Xu, J; Yang, S. Small 2015, 11, 2269-2274. DOI: https://doi.org/10.1002/smll.201403348

Yimsiri, P.; Mackley, M. R. Chem. Eng. Sci. 2006, 61, 3496-3505. DOI: https://doi.org/10.1016/j.ces.2005.12.018

Calleja, A.; Ricart, S.; Aklalouch, M.; Mestres, N.; Puig, T.; Obradors, X. J. Sol-Gel Sci.Technol. 2014, 72, 21-29. DOI: https://doi.org/10.1007/s10971-014-3417-2

Dong, J.; Xu, X.; Shi, J.-J.; Li, D.-M.; Luo, Y.-H.; Meng, Q.-B.; Chen, Q. Chin. Phys. Lett. 2015, 32, 078401. DOI: https://doi.org/10.1088/0256-307X/32/7/078401

Wu, X.; Li, H.; Wang, K.; Sun, X.; Wang, L. RSC Adv. 2018, 8, 11095-11101. DOI: https://doi.org/10.1039/C7RA12754E

Zhu, W.; Kang, L.; Yu, T.; Lv, B.; Wang, Y.; Chen, X.; Wang, X,; Zhou, Y.; Zou, Z., ACS Appl. Mater. Interfaces 2017, 9, 6104-6113. DOI: https://doi.org/10.1021/acsami.6b15563

Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. J. Am. Chem. Soc. 2014, 136, 11610-11613. DOI: https://doi.org/10.1021/ja506624n

Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J. S.; Park, N.-G.; Lee, J.H.; Jung, H.S. J. Mater. Chem. A, 2015, 3, 9160-9164. DOI: https://doi.org/10.1039/C4TA03684K

×

Published

2021-01-06

Issue

Section

Regular Articles
x

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.

Loading...