A Study of the Structural Features and Textural Properties of Carbon Sorbents Derived from Recycled Polyethylene Terephthalate and Polyethylene Waste

Authors

  • Alisher Kalbaev Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan https://orcid.org/0009-0004-3655-0538
  • Aziza Abdikamalova Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Dilzoda Asqarova Namangan Engineering-Technological Institute
  • Shahrom Khoshimov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan https://orcid.org/0000-0002-9386-9762
  • Rahimjon Paygamov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Khayot Bakhronov Tashkent University of Information Technologies named after Muhammad al-Khwarizmi
  • Kamoliddin Kholikov Namangan Engineering-Technological Institute
  • Dilnoza Salikhanova Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Dilnoza Jumaeva
  • Izzat Eshmetov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Nursultan Maratov Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Mamataliev Nozim Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan

DOI:

https://doi.org/10.29356/jmcs.v70i1.2438

Keywords:

Polyethylene terephthalate (PET), polyethylene (PE), carbon sorbent, porous structure

Abstract

Abstract. This article presents the results of a study on carbon sorbents obtained from recycled polyethylene terephthalate (PET) and polyethylene (PE) waste. The research focused on analyzing the structural features and textural properties of the sorbents, as well as their adsorption capabilities. It was found that the specific surface area of sorbents derived from PET with the addition of oxidized graphite reached 318.76 m²/g, while similar materials based on PE achieved up to 420.47 m²/g. These parameters, combined with an increased volume of micropores and mesopores, significantly enhance adsorption efficiency, particularly in water purification applications.

The addition of a pore-forming resulted in a further increase in specific surface area, reaching 825.99 m²/g for PET-OG10 and 1011.78 m²/g for PE-OG10, making these materials particularly promising for adsorption processes. Experimental results confirmed that such carbon-based sorbents effectively remove heavy metals and organic pollutants from water due to their well-developed micro- and mesoporous structure. Thus, the findings of this study

highlight the potential of recycled polymeric materials for the development of novel high-performance sorbents, contributing to enhanced environmental safety and sustainable waste management.

 

Resumen. Este artículo presenta los resultados de un estudio sobre sorbentes de carbono obtenidos a partir de residuos reciclados de politereftalato de etileno (PET) y polietileno (PE). La investigación se centró en el análisis de las características estructurales y las propiedades texturales de los sorbentes, así como en su capacidad de adsorción. Se encontró que el área superficial específica de los sorbentes derivados del PET con la adición de grafito oxidado alcanzó los 318.76 m²/g, mientras que materiales similares basados en PE lograron hasta 420,47 m²/g. Estos parámetros, combinados con un aumento en el volumen de microporos y mesoporos, mejoran significativamente la eficiencia de adsorción, particularmente en aplicaciones de purificación de agua.

La adición de un porógeno resultó en un aumento adicional del área superficial específica, alcanzando 825.99 m²/g para PET-OG10 y 1011.78 m²/g para PE-OG10, lo que hace que estos materiales sean especialmente prometedores para los procesos de adsorción. Los resultados experimentales confirmaron que estos sorbentes a base de carbono eliminan eficazmente metales pesados y contaminantes orgánicos del agua, gracias a su estructura bien desarrollada de micro y mesoporos. Por lo tanto, los hallazgos de este estudio destacan el potencial de los materiales poliméricos reciclados para el desarrollo de nuevos sorbentes de alto rendimiento, contribuyendo así a una mayor seguridad ambiental y a una gestión sostenible de residuos.

Downloads

Download data is not yet available.

References

1. Rhodes, C.J. Sci. Prog. 2018, 101, 207–260. DOI: https://doi.org/10.3184/003685018X15294876706211

2. Hammer, J.; Kraak, M.H.; Parsons, J.R. Rev. Environ. Contam. Toxicol. 2012, 220, 1–44. DOI: https://doi.org/10.1007/978-1-4614-3414-6_1

3. Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; … Dunlop, S. Ann. Glob. Health 2023, 89, 23. DOI: https://doi.org/10.5334/aogh.4331

4. Williams, A.T.; Rangel-Buitrago, N. Mar. Pollut. Bull. 2022, 176, 113429. DOI: https://doi.org/10.1016/j.marpolbul.2022.113429

5. Afshar, S.V.; Boldrin, A.; Astrup, T.F.; Daugaard, A.E.; Hartmann, N.B. J. Clean. Prod. 2024, 434, 140000.

6. Dey, S.; Veerendra, G.T.N.; Anjaneya Babu, P.S.S.; Phani Manoj, A.V.; Nagarjuna, K. Biomater. Devices. DOI: https://doi.org/10.1007/s44174-023-00085-w

7. Alaghemandi, M. Sustainability. 2024, 16, 10401. DOI: https://doi.org/10.3390/su162310401

8. Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Sustainability 2021, 13, 9963. DOI: https://doi.org/10.3390/su13179963

9. Cubas, A.L.V.; Moecke, E.H.S.; Provin, A.P.; Dutra, A.R.A.; Machado, M.M.; Gouveia, I.C. Polymers (Basel). 2023, 15, 3151. DOI: https://doi.org/10.3390/polym15153151

10. Tumu, K.; Vorst, K.; Curtzwiler, G. J. Environ. Manage. 2023, 348, 119242. DOI: https://doi.org/10.1016/j.jenvman.2023.119242

11. Tsuchimoto, I.; Kajikawa, Y. Sustainability. 2022, 14, 16340. DOI: https://doi.org/10.3390/su142416340

12. Dokl, M.; Copot, A.; Krajnc, D.; Fan, Y.V.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Sustainable Production and Consumption. 2024, 51, 498–518. DOI: https://doi.org/10.1016/j.spc.2024.09.025

13. Joseph, T.M.; Azat, S.; Ahmadi, Z.; Jazani, O.M.; Esmaeili, A.; Kianfar, E.; Haponiuk, J.; Thomas, S. Case Stud. Chem. Environ. Eng. 2024, 9, 100673. DOI: https://doi.org/10.1016/j.cscee.2024.100673

14. Massoud, T.; Dsilva, J. Next Sustainability. 2025, 6, 100095. DOI: https://doi.org/10.1016/j.nxsust.2024.100095

15. Dayal, L.; Yadav, K.; Dey, U.; Das, K.; Kumari, P.; Raj, D.; Mandal, R.R. J. Hazard. Mater. Adv. 2024, 16, 100460. DOI: https://doi.org/10.1016/j.hazadv.2024.100460

16. Mendoza-Carrasco, R.; Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C.; Gómez-Serrano, V. J. Environ. Manage. 2016, 181, 522–535. DOI: https://doi.org/10.1016/j.jenvman.2016.06.070

17. Almazán-Almazán, M.C.; Pérez-Mendoza, M.; Domingo-García, M.; Fernández-Morales, I.; López, F.J.; López-Garzón, F.J. Fuel Process. Technol. 2010, 91, 236–242. DOI: https://doi.org/10.1016/j.fuproc.2009.10.003

18. Rai, P.; Singh, K. P. J. Environ. Manage. 2018, 207, 249–261. DOI: https://doi.org/10.1016/j.jenvman.2017.11.047

19. Khoshimov, S.; Raxmonaliyeva, N.; Askarova, D.; Seytnazarova, O.; Abdikamalova, A. AIP Conf. Proc. 2024, 3045, 030059. DOI: https://doi.org/10.1063/5.0197789

20. Alhulaybi, Z.; Dubdub, I. Polymers, 2023, 15. DOI: https://doi.org/10.3390/polym15143010

21. Turnbull, L., Liggat, J. J., & Macdonald, W. A. Polym. Degrad. Stab. 2013, 98, 2244–2258. DOI: https://doi.org/10.1016/j.polymdegradstab.2013.08.018

22. EP0273274B1. Degradation of polyethylene by means of agents generating free radicals. Applicant: Elf Atochem Deutschland GmbH (DE). Publication date: 12 July 2000. Bulletin 2000/28. Application No. 87118394.3, filed 11 Dec 1987, priority date: 11 Dec 1986 (DE3642266). Available at: https://patents.google.com/patent/EP0273274B1/en

23. Chia, J.W.F.; Sawai, O.; Nunoura, T. Waste Manag. 2020, 108, 62–69. DOI: https://doi.org/10.1016/j.wasman.2020.04.035

24. Chen, S.; Liu, Z.; Jiang, S.; Hou, H. Sci. Total Environ. 2020, 710, 136250. DOI: https://doi.org/10.1016/j.scitotenv.2019.136250

25. Dimitrov, N.; Kratofil Krehula, L.; Ptiček Siročić, A.; Hrnjak-Murgić, Z. Polym. Degrad. Stab. 2013, 98, 972–979. DOI: https://doi.org/10.1016/j.polymdegradstab.2013.02.013

26. Zheng, G.; Wu, J.; Wang, W.; Pan, C. Carbon. 2004, 42, 2839–2847. DOI: https://doi.org/10.1016/j.carbon.2004.06.029

27. Xu, X. B.; et al. Carbon. 2005, 43, 1479–1487.

28. Bayburdov, T. A.; Shipovskaya, A. B. Izv. Saratov Univ. New Ser. Chem. Biol. Ecol. 2018, 18, 285–298. DOI: https://doi.org/10.18500/1816-9775-2018-18-3-285-298

29. Smolii, V. A.; Kosarev, A. S.; Yatsenko, E. A. Glass Ceram. 2020, 77, 94–97. DOI: https://doi.org/10.59957/jctm.v60.i1.2025.510.1007/s10717-020-00247-y

30. Seitnazarova, O.; Kalbaev, A.; Mamataliev, N.; Abdikamalova, A.; Najimova, N. J. Chem. Technol. Metall. 2025, 60. DOI: https://doi.org/10.59957/jctm.v60.i1.2025.5

31. Mamataliev, N.; Abdikamalova, A.; Eshmetov, I.; Kalbaev, A. J. Chem. Technol. Metall. 2023, 58. DOI: https://doi.org/10.59957/jctm.v58i6.140

32. Erdogan, F. Freundlich, Langmuir, Temkin, DR and Harkins-Jura. Int. J. Chem. Reactor Eng. 2019, 17, 20180134. DOI: https://doi.org/10.1515/ijcre-2018-0134

33. Yu, A.; Liu, Y.; Li, X.; Yang, Y.; Zhou, Z.; Liu, H. Water. 2021, 13, 608. DOI: https://doi.org/10.3390/w13050608

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.

Loading...