The Use of Grand Canonical Density Functional Theory Global and Local Reactivity Parameters to Study Electrochemical Processes in Energy Storage Materials
DOI:
https://doi.org/10.29356/jmcs.v69i1.2289Keywords:
Grand canonical density functional theory, solvent-free reactions, quantum capacitance, oxygen evolutionAbstract
In this review a summary of the results obtained in a collaboration between electrochemists and theoretical physical chemists in the chemistry department of the Metropolitan Autonomous University Campus Iztapalapa in recent years is presented. The focus is on the study of materials involved in electrochemical storage devices such as batteries and capacitors, and in advance electrochemical oxidation reactions. Along this collaboration, the combination of density functional theory reactivity parameters within the Grand Canonical Density Functional Theory give rise to an alternative approach to follow redox processes in bulk materials and in solid-liquid interfaces. Along the review, we show how global and local softness emerge as suitable and ad hoc quantities to analyze electrochemical experiments. The use of local softness to distinguish “innocent” coordination environments from the active ones is exemplified with representative systems. A robust method to estimate quantum and total capacitances is described in the case of substituted graphene and is also applicable to other systems. Also, the introduction of an absolute approximate scale to characterize the redox properties of electrode-solvent systems is illustrated for a set of well-known surfaces of transition metal oxides.
Resumen. En esta revisión se presenta un resumen de los resultados obtenidos de una colaboración entre electroquímicos y fiscoquímicos teóricos del departamento de química de la Universidad Autónoma Metropolitana Unidad Iztapalapa en los últimos años. Se hace énfasis en el estudio de los materiales implicados en los dispositivos de almacenamiento electroquímico de energía, como baterías y capacitores, y en las reacciones de oxidación electroquímica avanzada. Se analiza el uso de los parámetros de reactividad definidos en la Teoría de Funcionales de la Densidad en su formulación Gran Canónica para estudiar procesos redox en el bulto de los materiales y en intercaras sólido-líquido. Se muestran ejemplos de cómo la blandura química global y local emergen como cantidades ad hoc para analizar el comportamiento de los materiales que participan en procesos electroquímicos. En partícular, se muestra un ejemplo del uso de la blandura química local para distinguir, en procesos redox, los entornos de coordinación "inocentes" de los activos. Se describe también un método para estimar las capacitancias cuánticas y totales en el caso del grafeno sustituido y que es aplicable a intercaras sólido-liquido en general. Por otra parte, se ilustra, para un conjunto de superficies bien conocidas de óxidos de metales de transición, el uso de una escala absoluta aproximada para caracterizar en forma relativa las propiedades redox de los sistemas electrodo-disolvente.
Downloads
References
Tavernelli, I.; Vuilleumier, R.; Sprik, M. Phys. Rev. Lett. 2002, 88, 213002. DOI: https://doi.org/10.1103/PhysRevLett.88.213002. DOI: https://doi.org/10.1103/PhysRevLett.88.213002
Tateyama, Y.; Blumberger, J.; Sprik, M.; Tavernelli, I. J. Chem. Phys. 2005, 122, 234505. DOI: https://doi.org/10.1063/1.1938192. DOI: https://doi.org/10.1063/1.1938192
Sundararaman, R.; Vigil-Fowler, D.; Schwarz, K. Chem. Rev. 2022, 122, 10651-10674. DOI: https://doi.org/10.1021/acs.chemrev.1c00800. DOI: https://doi.org/10.1021/acs.chemrev.1c00800
Saubanère, M.; Yahia, M. B.; Lebègue, S.; Doublet, M. L. Nature 2014, 5, 5559. DOI: https://doi.org/10.1038/ncomms6559. DOI: https://doi.org/10.1038/ncomms6559
Neugebauer, H.; Bohle, F.; Bursch, M.; Hansen, A.; Grimme, S. J. Phys. Chem. A. 2020, 124, 7166-7176. DOI: https://doi.org/10.1021/acs.jpca.0c05052. DOI: https://doi.org/10.1021/acs.jpca.0c05052
Meng, Y. S.; Arroyo-de Dompablo, M. E. Energ. Environ. Sci. 2009, 2, 589-609. DOI: https://doi.org/10.1039/b901825e. DOI: https://doi.org/10.1039/b901825e
Li, M.; Yang, X.; Xue, Y. Theor. Chem. Acc. 2017, 136, 69. DOI: https://doi.org/10.1007/s00214-017-2103-1. DOI: https://doi.org/10.1007/s00214-017-2103-1
Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. C. 2007, 111, 5783-5799. DOI: https://doi.org/10.1021/jp066765w. DOI: https://doi.org/10.1021/jp066765w
Fornari, R. P.; de Silva, P. Molecules. 2021, 26, 3978. DOI: https://doi.org/10.3390/molecules26133978. DOI: https://doi.org/10.3390/molecules26133978
Fedorov, R.; Gryn’ova, G. J. Chem. Theor. Comp. 2023, 19, 4796-4814. DOI: https://doi.org/10.1021/acs.jctc.3c00355. DOI: https://doi.org/10.1021/acs.jctc.3c00355
Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11, 10757-10816. DOI: https://doi.org/10.1039/b907148b. DOI: https://doi.org/10.1039/b907148b
Bhattacharjee, S.; Isegawa, M.; Garcia-Ratés, M.; Neese, F.; Pantazis, D. A. J. Chem. Theor. Comp. 2022, 18, 1619-1632. DOI: https://doi.org/10.1021/acs.jctc.1c01267. DOI: https://doi.org/10.1021/acs.jctc.1c01267
Arumugam, K.; Becker, U. Minerals. 2014, 4, 345-387. DOI: https://doi.org/10.3390/min4020345. DOI: https://doi.org/10.3390/min4020345
Cheng, J.; Sulpizi, M.; Sprik, M. J. Chem. Phys. 2009, 131, 154504. DOI: https://doi.org/10.1063/1.3250438. DOI: https://doi.org/10.1063/1.3250438
Blumberger, J.; Bernasconi, L.; Tavernelli, I.; Vuilleumier, R.; Sprik, M. J. Am. Chem. Soc. 2004, 126, 3928-3938. DOI: https://doi.org/10.1021/ja0390754. DOI: https://doi.org/10.1021/ja0390754
Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A. 2008, 112, 6023-6031. DOI: https://doi.org/10.1021/jp711652a. DOI: https://doi.org/10.1021/jp711652a
Moens, J.; Geerlings, P.; Roos, G. Chemistry. 2007, 13, 8174-84. DOI: https://doi.org/10.1002/chem.200601896. DOI: https://doi.org/10.1002/chem.200601896
Miranda-Quintana, R. A.; Martinez Gonzalez, M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235-22243. DOI: https://doi.org/10.1039/c6cp03213c. DOI: https://doi.org/10.1039/C6CP03213C
Miranda, D. A.; Bueno, P. R. Phys. Chem. Chem. Phys. 2016, 18, 25984-25992. DOI: https://doi.org/10.1039/c6cp01659f. DOI: https://doi.org/10.1039/C6CP01659F
Filhol, J. S.; Doublet, M. L. J. Phys. Chem. C. 2014, 118, 19023-19031. DOI: https://doi.org/10.1021/jp502296p. DOI: https://doi.org/10.1021/jp502296p
Feliciano, G. T.; Bueno, P. R. J. Phys. Chem. C. 2020, 124, 14918-14927. DOI: https://doi.org/10.1021/acs.jpcc.0c04598. DOI: https://doi.org/10.1021/acs.jpcc.0c04598
Bueno, P. R.; Miranda, D. A. Phys. Chem. Chem. Phys. 2017, 19, 6184-6195. DOI: https://doi.org/10.1039/c6cp02504h. DOI: https://doi.org/10.1039/C6CP02504H
Bueno, P. R.; Feliciano, G. T.; Davis, J. J. Phys. Chem. Chem. Phys. 2015, 17, 9375-9382. DOI: https://doi.org/10.1039/c4cp06015f. DOI: https://doi.org/10.1039/C4CP06015F
Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2015, 54, 52-65. DOI: https://doi.org/10.1002/anie.201407031. DOI: https://doi.org/10.1002/anie.201407031
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1874. DOI: https://doi.org/10.1021/cr990029p. DOI: https://doi.org/10.1021/cr990029p
Geerlings, P.; Chamorro, E.; Chattaraj, P. K.; De Proft, F.; Gázquez, J. L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Theor. Chem. Acc. 2020, 139, 36. DOI: https://doi.org/10.1007/s00214-020-2546-7. DOI: https://doi.org/10.1007/s00214-020-2546-7
Gázquez, J. L.; Franco-Pérez, M.; Ayers, P. W.; Vela, A. Int. J. Quantum Chem. 2019, 119, e25797. DOI: https://doi.org/https://doi.org/10.1002/qua.25797. DOI: https://doi.org/10.1002/qua.25797
Kohn, W.; Vashishta, P., in: Theory of the Inhomogeneous Electron gas, Lundqvist, S. and March, N. H. Eds., Plenum, New York, 1983.
Mermin, N. D. Phys. Rev. 1965, 137, A1441. DOI: https://doi.org/10.1103/PhysRev.137.A1441. DOI: https://doi.org/10.1103/PhysRev.137.A1441
Sundararaman, R.; Schwarz, K. A.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2015, 142, 054102. DOI: https://doi.org/10.1063/1.4906828. DOI: https://doi.org/10.1063/1.4906828
Sundararaman, R.; Letchworth-Weaver, K.; Schwarz, K. A. J. Chem. Phys. 2018, 148, 144105. DOI: https://doi.org/10.1063/1.5024219. DOI: https://doi.org/10.1063/1.5024219
Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2014, 140, 144504. DOI: https://doi.org/10.1063/1.4870653. DOI: https://doi.org/10.1063/1.4870653
Sundararaman, R.; Arias, T. A. Comput. Phys. Commun. 2014, 185, 818-825. DOI: https://doi.org/10.1016/j.cpc.2013.11.013. DOI: https://doi.org/10.1016/j.cpc.2013.11.013
Petrosyan, S. A.; Briere, J.-F.; Roundy, D.; Arias, T. A. Phys. Rev. B. 2007, 75, 205105. DOI: https://doi.org/10.1103/PhysRevB.75.205105. DOI: https://doi.org/10.1103/PhysRevB.75.205105
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106. DOI: https://doi.org/10.1063/1.4865107. DOI: https://doi.org/10.1063/1.4865107
Letchworth-Weaver, K.; Arias, T. A. Phys. Rev. B. 2012, 86, 075140. DOI: https://doi.org/10.1103/PhysRevB.86.075140. DOI: https://doi.org/10.1103/PhysRevB.86.075140
Gunceler, D.; Letchworth-Weaver, K.; Sundararaman, R.; Schwarz, K. A.; Arias, T. A. Modell. Simul. Mater. Sci. Eng. 2013, 21, 074005. DOI: https://doi.org/10.1088/0965-0393/21/7/074005. DOI: https://doi.org/10.1088/0965-0393/21/7/074005
Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. DOI: https://doi.org/10.1063/1.4932539. DOI: https://doi.org/10.1063/1.4938422
Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723-6726. DOI: https://doi.org/10.1073/pnas.82.20.6723. DOI: https://doi.org/10.1073/pnas.82.20.6723
Vela, A.; Gazquez, J. L. J. Am. Chem. Soc. 1990, 112, 1490-1492. DOI: https://doi.org/10.1021/ja00160a029. DOI: https://doi.org/10.1021/ja00160a029
Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050. DOI: https://doi.org/10.1021/ja00326a036. DOI: https://doi.org/10.1021/ja00326a036
Goodenough, J. B. Solid State Ionics. 1994, 69, 184-198. DOI: https://doi.org/10.1016/0167-2738(94)90409-X. DOI: https://doi.org/10.1016/0167-2738(94)90409-X
Armand, M. B., in: Materials for Advanced Batteries, Murphy, D. W., Broadhead, J., and Steele, B. C. H. Eds., Springer, 1980, 145-161. DOI: https://doi.org/10.1007/978-1-4684-3851-2_7
Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. J. Mater. Chem. A. 2019, 7, 2942-2964. DOI: https://doi.org/10.1039/C8TA10513H. DOI: https://doi.org/10.1039/C8TA10513H
Islas-Vargas, C.; Guevara-García, A.; Oliver-Tolentino, M.; Ramos-Sánchez, G.; González, I.; Galván, M. J. Electrochem. Soc. 2019, 166, A5139. DOI: https://doi.org/10.1149/2.0231903jes. DOI: https://doi.org/10.1149/2.0231903jes
Johannes, M.; Swider-Lyons, K.; Love, C. T. Solid State Ionics. 2016, 286, 83-89. DOI: https://doi.org/10.1016/j.ssi.2015.12.025. DOI: https://doi.org/10.1016/j.ssi.2015.12.025
Johannes, M.; Hoang, K.; Allen, J.; Gaskell, K. Phys. Rev. B. 2012, 85, 115106. DOI: https://doi.org/10.1103/PhysRevB.85.115106. DOI: https://doi.org/10.1103/PhysRevB.85.115106
Perea-Ramírez, L. I.; Guevara-García, A.; Galván, M. J. Mol. Model. 2018, 24, 227. DOI: https://doi.org/10.1007/s00894-018-3754-0. DOI: https://doi.org/10.1007/s00894-018-3754-0
Cohen, M. H.; Ganduglia‐Pirovano, M. V.; Kudrnovský, J. J. Chem. Phys. 1994, 101, 8988-8997. DOI: https://doi.org/10.1063/1.468026.
Hasan, M. H.; McCrum, I. T. Curr. Opin. Electrochem. 2022, 33, 100937. DOI: https://doi.org/10.1016/j.coelec.2022.100937. DOI: https://doi.org/10.1016/j.coelec.2022.100937
Zhang, Y.; Cummings, P. T. ACS Appl. Mater. Interfaces. 2019, 11, 42680-42689. DOI: https://doi.org/10.1021/acsami.9b09939. DOI: https://doi.org/10.1021/acsami.9b09939
Sundararaman, R.; Goddard, W. A.; Arias, T. A. J. Chem. Phys. 2017, 146, 114104. DOI: https://doi.org/10.1063/1.4978411. DOI: https://doi.org/10.1063/1.4978411
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3094. DOI: https://doi.org/10.1021/cr9904009. DOI: https://doi.org/10.1021/cr9904009
Klamt, A. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1338. DOI: https://doi.org/10.1002/wcms.1338. DOI: https://doi.org/10.1002/wcms.1338
Mennucci, B. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 386-404. DOI: https://doi.org/10.1002/wcms.1086. DOI: https://doi.org/10.1002/wcms.1086
Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161-2200. DOI: https://doi.org/10.1021/cr960149m. DOI: https://doi.org/10.1021/cr960149m
Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Grimme, S. J. Comput. Chem. 2006, 27, 1787-1799. DOI: https://doi.org/10.1002/jcc.20495. DOI: https://doi.org/10.1002/jcc.20495
Sundararaman, R.; Goddard, W. A., 3rd. J. Chem. Phys. 2015, 142, 064107. DOI: https://doi.org/10.1063/1.4907731. DOI: https://doi.org/10.1063/1.4907731
Luryi, S. Appl. Phys. Lett. 1988, 52, 501-503. DOI: https://doi.org/10.1063/1.99649. DOI: https://doi.org/10.1063/1.99649
Paek, E.; Pak, A. J.; Hwang, G. S. J. Electrochem. Soc. 2013, 160, A1. DOI: https://doi.org/10.1149/2.019301jes. DOI: https://doi.org/10.1149/2.019301jes
Zhan, C.; Jiang, D.-e. J. Phys. Chem. Lett. 2016, 7, 789-794. DOI: https://doi.org/10.1021/acs.jpclett.6b00047. DOI: https://doi.org/10.1021/acs.jpclett.6b00047
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. Wiley, 2012.
Bo, Z.; Li, C.; Yang, H.; Ostrikov, K.; Yan, J.; Cen, K. Nano-Micro Lett. 2018, 10, 33. DOI: https://doi.org/10.1007/s40820-018-0188-2. DOI: https://doi.org/10.1007/s40820-018-0188-2
Górniak, R.; Lamperski, S. J. Phys. Chem. C. 2014, 118, 3156-3161. DOI: https://doi.org/10.1021/jp411698w. DOI: https://doi.org/10.1021/jp411698w
Perdew, J. P. Phys. Rev. B. 1988, 37, 6175. DOI: https://doi.org/10.1103/physrevb.37.6175. DOI: https://doi.org/10.1103/PhysRevB.37.6175
Sabin, J. R.; Trickey, S.; Apell, S. P.; Oddershede, J. Int. J. Quantum Chem. 2000, 77, 358-366. DOI: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D. DOI: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D
Iafrate, G.; Hess, K.; Krieger, J.; Macucci, M. Phys. Rev. B. 1995, 52, 10737. DOI: https://doi.org/10.1103/physrevb.52.10737. DOI: https://doi.org/10.1103/PhysRevB.52.10737
Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovský, J. Phys. Rev. Lett. 1994, 72, 3222-3225. DOI: https://doi.org/10.1103/PhysRevLett.72.3222. DOI: https://doi.org/10.1103/PhysRevLett.72.3222
Cohen, M.; Ganduglia‐Pirovano, M.; Kudrnovský, J. J. Chem. Phys. 1994, 101, 8988-8997. DOI: https://doi.org/10.1063/1.468026. DOI: https://doi.org/10.1063/1.468026
Cohen, M. H.; Ganduglia‐Pirovano, M. V.; Kudrnovský, J. J. Chem. Phys. 1995, 103, 3543-3551. DOI: https://doi.org/10.1063/1.470238. DOI: https://doi.org/10.1063/1.470238
Wilke, S.; Cohen, M. H.; Scheffler, M. Phys. Rev. Lett. 1996, 77, 1560-1563. DOI: https://doi.org/10.1103/PhysRevLett.77.1560. DOI: https://doi.org/10.1103/PhysRevLett.77.1560
Galvan, M.; Dal Pino Jr, A.; Wang, J.; Joannopoulos, J. D. J. Phys. Chem. 1993, 97, 783-785. DOI: https://doi.org/10.1021/j100106a001. DOI: https://doi.org/10.1021/j100106a001
Szarek, P. J. Phys. Chem. C. 2016, 120, 17175-17183. DOI: https://doi.org/10.1021/acs.jpcc.6b03752. DOI: https://doi.org/10.1021/acs.jpcc.6b03752
Ochoa-Calle, A.; Guevara-García, A.; Vazquez-Arenas, J.; González, I.; Galván, M. J. Phys. Chem. A. 2020, 124, 573-581. DOI: https://doi.org/10.1021/acs.jpca.9b10885. DOI: https://doi.org/10.1021/acs.jpca.9b10885
Pletcher, D., in: Electrochemistry for the environment, Comninellis, C. and Chen, G. Eds., Springer, 2010.
Comninellis, C. Electrochim. Acta. 1994, 39, 1857-1862. DOI: https://doi.org/10.1016/0013-4686(94)85175-1. DOI: https://doi.org/10.1016/0013-4686(94)85175-1
Jaimes, R.; Vazquez-Arenas, J.; González, I.; Galván, M. Electrochim. Acta. 2017, 229, 345-351. DOI: https://doi.org/10.1016/j.electacta.2017.01.120. DOI: https://doi.org/10.1016/j.electacta.2017.01.120
Jaimes, R.; Vazquez-Arenas, J.; González, I.; Galván, M. Surface Science. 2016, 653, 27-33. DOI: https://doi.org/10.1016/j.susc.2016.04.018. DOI: https://doi.org/10.1016/j.susc.2016.04.018
Islas-Vargas, C.; Guevara-García, A.; Galván, M. J. Chem. Phys. 2021, 154, 074704. DOI: https://doi.org/10.1063/5.0035208. DOI: https://doi.org/10.1063/5.0035208
Ping, Y.; Sundararaman, R.; Goddard III, W. A. Phys. Chem. Chem. Phys. 2015, 17, 30499-30509. DOI: https://doi.org/10.1039/c5cp05740j. DOI: https://doi.org/10.1039/C5CP05740J
Islas-Vargas, C.; Guevara-García, A.; Galván, M. Theor. Chem. Acc. 2024, 143, 34. DOI: https://doi.org/10.1007/s00214-024-03103-2. DOI: https://doi.org/10.1007/s00214-024-03103-2
Marselli, B.; Garcia-Gomez, J.; Michaud, P.-A.; Rodrigo, M. A.; Comninellis, C. J. Electrochem. Soc. 2003, 150, D79. DOI: https://doi.org/10.1149/1.1553790. DOI: https://doi.org/10.1149/1.1553790
Martinez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324-1340. DOI: https://doi.org/10.1039/b517632h. DOI: https://doi.org/10.1039/B517632H
Koppenol, W.; Liebman, J. F. J. Phys. Chem. 1984, 88, 99-101. DOI: https://doi.org/10.1021/j150645a024. DOI: https://doi.org/10.1021/j150645a024
Berdinko, V.; Bazhin, N. Russ. J. Phys. Chem. 1970, 44, 395.
Li, A.; Weng, J.; Yan, X.; Li, H.; Shi, H.; Wu, X. J. Electroanal. Chem. 2021, 898, 115622. DOI: https://doi.org/10.1016/j.jelechem.2021.115622. DOI: https://doi.org/10.1016/j.jelechem.2021.115622
Smith, J. C.; Pribram-Jones, A.; Burke, K. Phys. Rev. B. 2016, 93, 245131. DOI: https://doi.org/10.1103/PhysRevB.93.245131. DOI: https://doi.org/10.1103/PhysRevB.93.205140
Harding, B. P.; Mauri, Z.; Xie, V. W.; Pribram-Jones, A. J. Chem. Phys. 2024, 160, 154108. DOI: https://doi.org/10.1063/5.0196650. DOI: https://doi.org/10.1063/5.0196650
Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A. Phys. Rev. B. 2016, 93, 195132. DOI: https://doi.org/10.1103/PhysRevB.93.195132. DOI: https://doi.org/10.1103/PhysRevB.93.195132
Kozlowski, J.; Perchak, D.; Burke, K. arXiv preprint arXiv:2308.03319. 2023, DOI: https://doi.org/10.48550/arXiv.2308.03319.
Sundararaman, R.; Schwarz, K. J. Chem. Phys. 2017, 146, 084111. DOI: https://doi.org/10.1063/1.4976971. DOI: https://doi.org/10.1063/1.4976971


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Claudia Islas-Vargas, Alfredo Guevara-García, Marcelo Galván

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
