The Use of Grand Canonical Density Functional Theory Global and Local Reactivity Parameters to Study Electrochemical Processes in Energy Storage Materials

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i1.2289

Keywords:

Grand canonical density functional theory, solvent-free reactions, quantum capacitance, oxygen evolution

Abstract

In this review a summary of the results obtained in a collaboration between electrochemists and theoretical physical chemists in the chemistry department of the Metropolitan Autonomous University Campus Iztapalapa in recent years is presented. The focus is on the study of materials involved in electrochemical storage devices such as batteries and capacitors, and in advance electrochemical oxidation reactions. Along this collaboration, the combination of density functional theory reactivity parameters within the Grand Canonical Density Functional Theory give rise to an alternative approach to follow redox processes in bulk materials and in solid-liquid interfaces. Along the review, we show how global and local softness emerge as suitable and ad hoc quantities to analyze electrochemical experiments. The use of local softness to distinguish “innocent” coordination environments from the active ones is exemplified with representative systems. A robust method to estimate quantum and total capacitances is described in the case of substituted graphene and is also applicable to other systems. Also, the introduction of an absolute approximate scale to characterize the redox properties of electrode-solvent systems is illustrated for a set of well-known surfaces of transition metal oxides.

 

Resumen. En esta revisión se presenta un resumen de los resultados obtenidos de una colaboración entre electroquímicos y fiscoquímicos teóricos del departamento de química de la Universidad Autónoma Metropolitana Unidad Iztapalapa en los últimos años. Se hace énfasis en el estudio de los materiales implicados en los dispositivos de almacenamiento electroquímico de energía, como baterías y capacitores, y en las reacciones de oxidación electroquímica avanzada. Se analiza el uso de los parámetros de reactividad definidos en la Teoría de Funcionales de la Densidad en su formulación Gran Canónica para estudiar procesos redox en el bulto de los materiales y en intercaras sólido-líquido. Se muestran ejemplos de cómo la blandura química global y local emergen como cantidades ad hoc para analizar el comportamiento de los materiales que participan en procesos electroquímicos. En partícular, se muestra un ejemplo del uso de la blandura química local para distinguir, en procesos redox, los entornos de coordinación "inocentes" de los activos. Se describe también un método para estimar las capacitancias cuánticas y totales en el caso del grafeno sustituido y que es aplicable a intercaras sólido-liquido en general. Por otra parte, se ilustra, para un conjunto de superficies bien conocidas de óxidos de metales de transición, el uso de una escala absoluta aproximada para caracterizar en forma relativa las propiedades redox de los sistemas electrodo-disolvente.

Downloads

Download data is not yet available.

Author Biographies

Claudia Islas-Vargas, Universidad Autónoma Metropolitana Iztapalapa

Departamento de Química.

Sección de Química Analítica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México

Alfredo Guevara-García, CONAHCYT-Universidad Autónoma Metropolitana Iztapalapa

Departamento de Química

Marcelo Galván, Universidad Autónoma Metropolitana Iztapalapa

Departamento de Química

References

Tavernelli, I.; Vuilleumier, R.; Sprik, M. Phys. Rev. Lett. 2002, 88, 213002. DOI: https://doi.org/10.1103/PhysRevLett.88.213002. DOI: https://doi.org/10.1103/PhysRevLett.88.213002

Tateyama, Y.; Blumberger, J.; Sprik, M.; Tavernelli, I. J. Chem. Phys. 2005, 122, 234505. DOI: https://doi.org/10.1063/1.1938192. DOI: https://doi.org/10.1063/1.1938192

Sundararaman, R.; Vigil-Fowler, D.; Schwarz, K. Chem. Rev. 2022, 122, 10651-10674. DOI: https://doi.org/10.1021/acs.chemrev.1c00800. DOI: https://doi.org/10.1021/acs.chemrev.1c00800

Saubanère, M.; Yahia, M. B.; Lebègue, S.; Doublet, M. L. Nature 2014, 5, 5559. DOI: https://doi.org/10.1038/ncomms6559. DOI: https://doi.org/10.1038/ncomms6559

Neugebauer, H.; Bohle, F.; Bursch, M.; Hansen, A.; Grimme, S. J. Phys. Chem. A. 2020, 124, 7166-7176. DOI: https://doi.org/10.1021/acs.jpca.0c05052. DOI: https://doi.org/10.1021/acs.jpca.0c05052

Meng, Y. S.; Arroyo-de Dompablo, M. E. Energ. Environ. Sci. 2009, 2, 589-609. DOI: https://doi.org/10.1039/b901825e. DOI: https://doi.org/10.1039/b901825e

Li, M.; Yang, X.; Xue, Y. Theor. Chem. Acc. 2017, 136, 69. DOI: https://doi.org/10.1007/s00214-017-2103-1. DOI: https://doi.org/10.1007/s00214-017-2103-1

Jaque, P.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. C. 2007, 111, 5783-5799. DOI: https://doi.org/10.1021/jp066765w. DOI: https://doi.org/10.1021/jp066765w

Fornari, R. P.; de Silva, P. Molecules. 2021, 26, 3978. DOI: https://doi.org/10.3390/molecules26133978. DOI: https://doi.org/10.3390/molecules26133978

Fedorov, R.; Gryn’ova, G. J. Chem. Theor. Comp. 2023, 19, 4796-4814. DOI: https://doi.org/10.1021/acs.jctc.3c00355. DOI: https://doi.org/10.1021/acs.jctc.3c00355

Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009, 11, 10757-10816. DOI: https://doi.org/10.1039/b907148b. DOI: https://doi.org/10.1039/b907148b

Bhattacharjee, S.; Isegawa, M.; Garcia-Ratés, M.; Neese, F.; Pantazis, D. A. J. Chem. Theor. Comp. 2022, 18, 1619-1632. DOI: https://doi.org/10.1021/acs.jctc.1c01267. DOI: https://doi.org/10.1021/acs.jctc.1c01267

Arumugam, K.; Becker, U. Minerals. 2014, 4, 345-387. DOI: https://doi.org/10.3390/min4020345. DOI: https://doi.org/10.3390/min4020345

Cheng, J.; Sulpizi, M.; Sprik, M. J. Chem. Phys. 2009, 131, 154504. DOI: https://doi.org/10.1063/1.3250438. DOI: https://doi.org/10.1063/1.3250438

Blumberger, J.; Bernasconi, L.; Tavernelli, I.; Vuilleumier, R.; Sprik, M. J. Am. Chem. Soc. 2004, 126, 3928-3938. DOI: https://doi.org/10.1021/ja0390754. DOI: https://doi.org/10.1021/ja0390754

Moens, J.; Jaque, P.; De Proft, F.; Geerlings, P. J. Phys. Chem. A. 2008, 112, 6023-6031. DOI: https://doi.org/10.1021/jp711652a. DOI: https://doi.org/10.1021/jp711652a

Moens, J.; Geerlings, P.; Roos, G. Chemistry. 2007, 13, 8174-84. DOI: https://doi.org/10.1002/chem.200601896. DOI: https://doi.org/10.1002/chem.200601896

Miranda-Quintana, R. A.; Martinez Gonzalez, M.; Ayers, P. W. Phys. Chem. Chem. Phys. 2016, 18, 22235-22243. DOI: https://doi.org/10.1039/c6cp03213c. DOI: https://doi.org/10.1039/C6CP03213C

Miranda, D. A.; Bueno, P. R. Phys. Chem. Chem. Phys. 2016, 18, 25984-25992. DOI: https://doi.org/10.1039/c6cp01659f. DOI: https://doi.org/10.1039/C6CP01659F

Filhol, J. S.; Doublet, M. L. J. Phys. Chem. C. 2014, 118, 19023-19031. DOI: https://doi.org/10.1021/jp502296p. DOI: https://doi.org/10.1021/jp502296p

Feliciano, G. T.; Bueno, P. R. J. Phys. Chem. C. 2020, 124, 14918-14927. DOI: https://doi.org/10.1021/acs.jpcc.0c04598. DOI: https://doi.org/10.1021/acs.jpcc.0c04598

Bueno, P. R.; Miranda, D. A. Phys. Chem. Chem. Phys. 2017, 19, 6184-6195. DOI: https://doi.org/10.1039/c6cp02504h. DOI: https://doi.org/10.1039/C6CP02504H

Bueno, P. R.; Feliciano, G. T.; Davis, J. J. Phys. Chem. Chem. Phys. 2015, 17, 9375-9382. DOI: https://doi.org/10.1039/c4cp06015f. DOI: https://doi.org/10.1039/C4CP06015F

Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem. Int. Ed. 2015, 54, 52-65. DOI: https://doi.org/10.1002/anie.201407031. DOI: https://doi.org/10.1002/anie.201407031

Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989.

Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1874. DOI: https://doi.org/10.1021/cr990029p. DOI: https://doi.org/10.1021/cr990029p

Geerlings, P.; Chamorro, E.; Chattaraj, P. K.; De Proft, F.; Gázquez, J. L.; Liu, S.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. Theor. Chem. Acc. 2020, 139, 36. DOI: https://doi.org/10.1007/s00214-020-2546-7. DOI: https://doi.org/10.1007/s00214-020-2546-7

Gázquez, J. L.; Franco-Pérez, M.; Ayers, P. W.; Vela, A. Int. J. Quantum Chem. 2019, 119, e25797. DOI: https://doi.org/https://doi.org/10.1002/qua.25797. DOI: https://doi.org/10.1002/qua.25797

Kohn, W.; Vashishta, P., in: Theory of the Inhomogeneous Electron gas, Lundqvist, S. and March, N. H. Eds., Plenum, New York, 1983.

Mermin, N. D. Phys. Rev. 1965, 137, A1441. DOI: https://doi.org/10.1103/PhysRev.137.A1441. DOI: https://doi.org/10.1103/PhysRev.137.A1441

Sundararaman, R.; Schwarz, K. A.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2015, 142, 054102. DOI: https://doi.org/10.1063/1.4906828. DOI: https://doi.org/10.1063/1.4906828

Sundararaman, R.; Letchworth-Weaver, K.; Schwarz, K. A. J. Chem. Phys. 2018, 148, 144105. DOI: https://doi.org/10.1063/1.5024219. DOI: https://doi.org/10.1063/1.5024219

Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2014, 140, 144504. DOI: https://doi.org/10.1063/1.4870653. DOI: https://doi.org/10.1063/1.4870653

Sundararaman, R.; Arias, T. A. Comput. Phys. Commun. 2014, 185, 818-825. DOI: https://doi.org/10.1016/j.cpc.2013.11.013. DOI: https://doi.org/10.1016/j.cpc.2013.11.013

Petrosyan, S. A.; Briere, J.-F.; Roundy, D.; Arias, T. A. Phys. Rev. B. 2007, 75, 205105. DOI: https://doi.org/10.1103/PhysRevB.75.205105. DOI: https://doi.org/10.1103/PhysRevB.75.205105

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106. DOI: https://doi.org/10.1063/1.4865107. DOI: https://doi.org/10.1063/1.4865107

Letchworth-Weaver, K.; Arias, T. A. Phys. Rev. B. 2012, 86, 075140. DOI: https://doi.org/10.1103/PhysRevB.86.075140. DOI: https://doi.org/10.1103/PhysRevB.86.075140

Gunceler, D.; Letchworth-Weaver, K.; Sundararaman, R.; Schwarz, K. A.; Arias, T. A. Modell. Simul. Mater. Sci. Eng. 2013, 21, 074005. DOI: https://doi.org/10.1088/0965-0393/21/7/074005. DOI: https://doi.org/10.1088/0965-0393/21/7/074005

Franco-Pérez, M.; Gázquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. DOI: https://doi.org/10.1063/1.4932539. DOI: https://doi.org/10.1063/1.4938422

Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723-6726. DOI: https://doi.org/10.1073/pnas.82.20.6723. DOI: https://doi.org/10.1073/pnas.82.20.6723

Vela, A.; Gazquez, J. L. J. Am. Chem. Soc. 1990, 112, 1490-1492. DOI: https://doi.org/10.1021/ja00160a029. DOI: https://doi.org/10.1021/ja00160a029

Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050. DOI: https://doi.org/10.1021/ja00326a036. DOI: https://doi.org/10.1021/ja00326a036

Goodenough, J. B. Solid State Ionics. 1994, 69, 184-198. DOI: https://doi.org/10.1016/0167-2738(94)90409-X. DOI: https://doi.org/10.1016/0167-2738(94)90409-X

Armand, M. B., in: Materials for Advanced Batteries, Murphy, D. W., Broadhead, J., and Steele, B. C. H. Eds., Springer, 1980, 145-161. DOI: https://doi.org/10.1007/978-1-4684-3851-2_7

Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. J. Mater. Chem. A. 2019, 7, 2942-2964. DOI: https://doi.org/10.1039/C8TA10513H. DOI: https://doi.org/10.1039/C8TA10513H

Islas-Vargas, C.; Guevara-García, A.; Oliver-Tolentino, M.; Ramos-Sánchez, G.; González, I.; Galván, M. J. Electrochem. Soc. 2019, 166, A5139. DOI: https://doi.org/10.1149/2.0231903jes. DOI: https://doi.org/10.1149/2.0231903jes

Johannes, M.; Swider-Lyons, K.; Love, C. T. Solid State Ionics. 2016, 286, 83-89. DOI: https://doi.org/10.1016/j.ssi.2015.12.025. DOI: https://doi.org/10.1016/j.ssi.2015.12.025

Johannes, M.; Hoang, K.; Allen, J.; Gaskell, K. Phys. Rev. B. 2012, 85, 115106. DOI: https://doi.org/10.1103/PhysRevB.85.115106. DOI: https://doi.org/10.1103/PhysRevB.85.115106

Perea-Ramírez, L. I.; Guevara-García, A.; Galván, M. J. Mol. Model. 2018, 24, 227. DOI: https://doi.org/10.1007/s00894-018-3754-0. DOI: https://doi.org/10.1007/s00894-018-3754-0

Cohen, M. H.; Ganduglia‐Pirovano, M. V.; Kudrnovský, J. J. Chem. Phys. 1994, 101, 8988-8997. DOI: https://doi.org/10.1063/1.468026.

Hasan, M. H.; McCrum, I. T. Curr. Opin. Electrochem. 2022, 33, 100937. DOI: https://doi.org/10.1016/j.coelec.2022.100937. DOI: https://doi.org/10.1016/j.coelec.2022.100937

Zhang, Y.; Cummings, P. T. ACS Appl. Mater. Interfaces. 2019, 11, 42680-42689. DOI: https://doi.org/10.1021/acsami.9b09939. DOI: https://doi.org/10.1021/acsami.9b09939

Sundararaman, R.; Goddard, W. A.; Arias, T. A. J. Chem. Phys. 2017, 146, 114104. DOI: https://doi.org/10.1063/1.4978411. DOI: https://doi.org/10.1063/1.4978411

Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3094. DOI: https://doi.org/10.1021/cr9904009. DOI: https://doi.org/10.1021/cr9904009

Klamt, A. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1338. DOI: https://doi.org/10.1002/wcms.1338. DOI: https://doi.org/10.1002/wcms.1338

Mennucci, B. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 386-404. DOI: https://doi.org/10.1002/wcms.1086. DOI: https://doi.org/10.1002/wcms.1086

Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161-2200. DOI: https://doi.org/10.1021/cr960149m. DOI: https://doi.org/10.1021/cr960149m

Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

Grimme, S. J. Comput. Chem. 2006, 27, 1787-1799. DOI: https://doi.org/10.1002/jcc.20495. DOI: https://doi.org/10.1002/jcc.20495

Sundararaman, R.; Goddard, W. A., 3rd. J. Chem. Phys. 2015, 142, 064107. DOI: https://doi.org/10.1063/1.4907731. DOI: https://doi.org/10.1063/1.4907731

Luryi, S. Appl. Phys. Lett. 1988, 52, 501-503. DOI: https://doi.org/10.1063/1.99649. DOI: https://doi.org/10.1063/1.99649

Paek, E.; Pak, A. J.; Hwang, G. S. J. Electrochem. Soc. 2013, 160, A1. DOI: https://doi.org/10.1149/2.019301jes. DOI: https://doi.org/10.1149/2.019301jes

Zhan, C.; Jiang, D.-e. J. Phys. Chem. Lett. 2016, 7, 789-794. DOI: https://doi.org/10.1021/acs.jpclett.6b00047. DOI: https://doi.org/10.1021/acs.jpclett.6b00047

Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. Wiley, 2012.

Bo, Z.; Li, C.; Yang, H.; Ostrikov, K.; Yan, J.; Cen, K. Nano-Micro Lett. 2018, 10, 33. DOI: https://doi.org/10.1007/s40820-018-0188-2. DOI: https://doi.org/10.1007/s40820-018-0188-2

Górniak, R.; Lamperski, S. J. Phys. Chem. C. 2014, 118, 3156-3161. DOI: https://doi.org/10.1021/jp411698w. DOI: https://doi.org/10.1021/jp411698w

Perdew, J. P. Phys. Rev. B. 1988, 37, 6175. DOI: https://doi.org/10.1103/physrevb.37.6175. DOI: https://doi.org/10.1103/PhysRevB.37.6175

Sabin, J. R.; Trickey, S.; Apell, S. P.; Oddershede, J. Int. J. Quantum Chem. 2000, 77, 358-366. DOI: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D. DOI: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<358::AID-QUA35>3.0.CO;2-D

Iafrate, G.; Hess, K.; Krieger, J.; Macucci, M. Phys. Rev. B. 1995, 52, 10737. DOI: https://doi.org/10.1103/physrevb.52.10737. DOI: https://doi.org/10.1103/PhysRevB.52.10737

Cohen, M. H.; Ganduglia-Pirovano, M. V.; Kudrnovský, J. Phys. Rev. Lett. 1994, 72, 3222-3225. DOI: https://doi.org/10.1103/PhysRevLett.72.3222. DOI: https://doi.org/10.1103/PhysRevLett.72.3222

Cohen, M.; Ganduglia‐Pirovano, M.; Kudrnovský, J. J. Chem. Phys. 1994, 101, 8988-8997. DOI: https://doi.org/10.1063/1.468026. DOI: https://doi.org/10.1063/1.468026

Cohen, M. H.; Ganduglia‐Pirovano, M. V.; Kudrnovský, J. J. Chem. Phys. 1995, 103, 3543-3551. DOI: https://doi.org/10.1063/1.470238. DOI: https://doi.org/10.1063/1.470238

Wilke, S.; Cohen, M. H.; Scheffler, M. Phys. Rev. Lett. 1996, 77, 1560-1563. DOI: https://doi.org/10.1103/PhysRevLett.77.1560. DOI: https://doi.org/10.1103/PhysRevLett.77.1560

Galvan, M.; Dal Pino Jr, A.; Wang, J.; Joannopoulos, J. D. J. Phys. Chem. 1993, 97, 783-785. DOI: https://doi.org/10.1021/j100106a001. DOI: https://doi.org/10.1021/j100106a001

Szarek, P. J. Phys. Chem. C. 2016, 120, 17175-17183. DOI: https://doi.org/10.1021/acs.jpcc.6b03752. DOI: https://doi.org/10.1021/acs.jpcc.6b03752

Ochoa-Calle, A.; Guevara-García, A.; Vazquez-Arenas, J.; González, I.; Galván, M. J. Phys. Chem. A. 2020, 124, 573-581. DOI: https://doi.org/10.1021/acs.jpca.9b10885. DOI: https://doi.org/10.1021/acs.jpca.9b10885

Pletcher, D., in: Electrochemistry for the environment, Comninellis, C. and Chen, G. Eds., Springer, 2010.

Comninellis, C. Electrochim. Acta. 1994, 39, 1857-1862. DOI: https://doi.org/10.1016/0013-4686(94)85175-1. DOI: https://doi.org/10.1016/0013-4686(94)85175-1

Jaimes, R.; Vazquez-Arenas, J.; González, I.; Galván, M. Electrochim. Acta. 2017, 229, 345-351. DOI: https://doi.org/10.1016/j.electacta.2017.01.120. DOI: https://doi.org/10.1016/j.electacta.2017.01.120

Jaimes, R.; Vazquez-Arenas, J.; González, I.; Galván, M. Surface Science. 2016, 653, 27-33. DOI: https://doi.org/10.1016/j.susc.2016.04.018. DOI: https://doi.org/10.1016/j.susc.2016.04.018

Islas-Vargas, C.; Guevara-García, A.; Galván, M. J. Chem. Phys. 2021, 154, 074704. DOI: https://doi.org/10.1063/5.0035208. DOI: https://doi.org/10.1063/5.0035208

Ping, Y.; Sundararaman, R.; Goddard III, W. A. Phys. Chem. Chem. Phys. 2015, 17, 30499-30509. DOI: https://doi.org/10.1039/c5cp05740j. DOI: https://doi.org/10.1039/C5CP05740J

Islas-Vargas, C.; Guevara-García, A.; Galván, M. Theor. Chem. Acc. 2024, 143, 34. DOI: https://doi.org/10.1007/s00214-024-03103-2. DOI: https://doi.org/10.1007/s00214-024-03103-2

Marselli, B.; Garcia-Gomez, J.; Michaud, P.-A.; Rodrigo, M. A.; Comninellis, C. J. Electrochem. Soc. 2003, 150, D79. DOI: https://doi.org/10.1149/1.1553790. DOI: https://doi.org/10.1149/1.1553790

Martinez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324-1340. DOI: https://doi.org/10.1039/b517632h. DOI: https://doi.org/10.1039/B517632H

Koppenol, W.; Liebman, J. F. J. Phys. Chem. 1984, 88, 99-101. DOI: https://doi.org/10.1021/j150645a024. DOI: https://doi.org/10.1021/j150645a024

Berdinko, V.; Bazhin, N. Russ. J. Phys. Chem. 1970, 44, 395.

Li, A.; Weng, J.; Yan, X.; Li, H.; Shi, H.; Wu, X. J. Electroanal. Chem. 2021, 898, 115622. DOI: https://doi.org/10.1016/j.jelechem.2021.115622. DOI: https://doi.org/10.1016/j.jelechem.2021.115622

Smith, J. C.; Pribram-Jones, A.; Burke, K. Phys. Rev. B. 2016, 93, 245131. DOI: https://doi.org/10.1103/PhysRevB.93.245131. DOI: https://doi.org/10.1103/PhysRevB.93.205140

Harding, B. P.; Mauri, Z.; Xie, V. W.; Pribram-Jones, A. J. Chem. Phys. 2024, 160, 154108. DOI: https://doi.org/10.1063/5.0196650. DOI: https://doi.org/10.1063/5.0196650

Burke, K.; Smith, J. C.; Grabowski, P. E.; Pribram-Jones, A. Phys. Rev. B. 2016, 93, 195132. DOI: https://doi.org/10.1103/PhysRevB.93.195132. DOI: https://doi.org/10.1103/PhysRevB.93.195132

Kozlowski, J.; Perchak, D.; Burke, K. arXiv preprint arXiv:2308.03319. 2023, DOI: https://doi.org/10.48550/arXiv.2308.03319.

Sundararaman, R.; Schwarz, K. J. Chem. Phys. 2017, 146, 084111. DOI: https://doi.org/10.1063/1.4976971. DOI: https://doi.org/10.1063/1.4976971

×

Downloads

Published

2025-01-01
x

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Loading...