Noninvasive Determination of the Amount of Ethanol in Liquid Mixtures by Ultrasound Using Bilinear Interpolation Method

Authors

  • Ahmet Ayd?n Cukurova University, Department of Biomedical Engineering
  • Cemil Keskino?lu Cukurova University
  • Umut Kökba? University of Kyrenia
  • Abdullah Tuli Cukurova University

DOI:

https://doi.org/10.29356/jmcs.v64i1.1031

Keywords:

TOF measurement, bilinear interpolation, noninvasive ultrasonic method, mixture analysis, alcohol concentration

Abstract

Ultrasound is used in many analysis studies, including liquid mixtures. Many mixtures are analyzed to understand their contents or properties in different situations. One of these mixtures is the ethanol-water combination. In this study, the amount of ethanol in the liquid mixture was determined noninvasively by the ultrasonic method using a microcontroller-based system. The results show that the measurements obtained were within the p<0.05 confidence interval. The characteristics evaluation of the system shows that the system can detect ethanol concentration as low as 0.552 g/L, thus the system has a broad and linear determination range for ethanol. Although the system is calibrated and tested with ethanol-water mixture, it can be used for any mixture that changes density related to the substance concentration, including different alcohols which are soluble in water (glycols, glycoethers, etc.) or any other material (solid or liquid) which is soluble in alcohol or different liquid solvent. The system has so many advantages that make it possible to use comfortably in many areas where the amount of ethanol contained in the mixture is essential. These advantages are the high accuracy and sensitivity, being noninvasive, portable, and not having a destructive effect on the substance.

 

Resumen. El ultrasonido es utilizado en muchos estudios incluyendo las mezclas liquidas. Se analizan varias mezclas para entender sus contenidos y propiedades en diferentes situaciones. Una de estas mezclas es la combinación de etanol-agua. En este estudio, la cantidad de etanol en la mezcla líquida fue determinada de manera no invasiva con el método ultrasonico utilizando un sistema basado en microcontrolador. Los resultados muestran que las mediciones obtenidas se encontraban dentro de un intervalo de confianza de p<0.05. Las características de evaluación del sistema muestran que se puede detectar etanol a una concentración tan baja como 0.552 g/L, por lo tanto, el sistema tiene un rango de determinación linear amplio para etanol. Aunque el sistema se calibra y prueba con mezcla de etanol-agua, puede ser utilizado para cualquier mezcla que cambia de densidad en relación con la concentración de la substancia, incluyendo diferentes alcoholes que son solubles en agua (glicoles, glicoeteres, etc) o cualquier otro material (sólido o líquido) que sea soluble en alcohol o en algún solvente líquido diferente. El sistema tiene muchas ventajas que hacen posible su utilización en muchas áreas donde la cantidad de etanol contenida en la mezcla es esencial. Estas ventajas son de alta precisión y sensiblididad al ser no invasivo, portátil y al no tener un efecto destructivo sobre la sustancia.

Downloads

Download data is not yet available.

Author Biographies

Cemil Keskino?lu, Cukurova University

Department of Biomedical Engineering

Umut Kökba?, University of Kyrenia

Department of Medical Biochemistry

Abdullah Tuli, Cukurova University

Department of Medical Biochemistry

References

Chen, F., Yang, Z, Chen, Z. , Hu,J., Chen, C. and Cai J. J. of Mol. Liq. 2015, 209, 683-692. DOI: https://doi.org/10.1016/j.molliq.2015.06.041

Gowrisankar, M., Venkateswarlu, P., Sivakumar, K. and Sivarambabu, S. Arabian J. of Chem. 2017, 10, S2625-S2636. DOI: https://doi.org/10.1016/j.arabjc.2013.09.042

Hevia, F., Cobos, A., González, J.A., de la Fuente, I.G. and Alonso V. J. of Solution Chem. 2017, 46, 150-174. DOI: https://doi.org/10.1007/s10953-016-0560-0

Salinas, R., Pla-Franco J., Lladosa, E. , and Montón, J.B. J. of Chemical & Engineering Data, 2015, 60, 525-540. DOI: https://doi.org/10.1021/je500594z

Shekaari, H., Zafarani-Moattar, M.T., and Faraji, S. J. of Chemical & Engineering Data, 2017, 62, 4187-4195. DOI: https://doi.org/10.1021/acs.jced.7b00581

Varfolomeev, M.A., Rakipov, I.T., Solomonov, B.N., and Marczak, W. J. of Chemical & Engineering Data, 2016, 61, 1032-1046. DOI: https://doi.org/10.1021/acs.jced.5b00474

Zarei, H. and Keley, V. J. of Chemical & Engineering Data, 2017, 62, 913-923. DOI: https://doi.org/10.1021/acs.jced.6b00496

Rowlinson, J.S. and Swinton, F. Liquids and liquid mixtures: Butterworths monographs in chemistry. 2013, Butterworth-Heinemann.

Park, R. West J. of Med., 1980, 133, 418.

Lieber, C.S. Alcohol.: Clin. and Exp. Res. 1991, 15, 573-592. DOI: https://doi.org/10.1111/j.1530-0277.1991.tb00563.x

Giacomini, A. J. Acoust. Soc. of Am. 1947, 19, 701-702. DOI: https://doi.org/10.1121/1.1916541

Meister, E.C., Measurement of the Temperature and Concentration Dependent Sound Velocity in Ethanol-Water Liquid Mixtures. 2015.

Widmark, E.M. Acta Med. Scand. 1919, 52, 87-164. DOI: https://doi.org/10.1111/j.0954-6820.1919.tb08277.x

Akyilmaz, E. and Dinçkaya, E. Talanta 2003. 61, 113-118. DOI: https://doi.org/10.1016/S0039-9140(03)00245-5

Heberle, I., Liebminger, A., Weimar, U., and Göpel, W. Sens. Actuators, B 2000, 68, 53-57. DOI: https://doi.org/10.1016/S0925-4005(00)00461-5

Rahman, M.M., Jamal, A., Khan, S.B., and Faisal, M. Biosens. Bioelectron. 2011, 28, 127-134. DOI: https://doi.org/10.1016/j.bios.2011.07.024

Azevedo, A.M., Prazeres, D.M.F., J.M. Cabral, and Fonseca, L.P. Biosens. Bioelectron. 2005, 21, 235-247. DOI: https://doi.org/10.1016/j.bios.2004.09.030

Martin, K. and Spinks, D. Ultrasound in medicine & biology, 2001, 27, 289-291. DOI: https://doi.org/10.1016/S0301-5629(00)00331-8

Tong, J., Povey, M. Zou, X. Ward, B. and Oates, C. J. of Phys.: Conf. Ser. 2011, IOP Publishing.

Curry, A., Walker, G. and Simpson, G. Analyst, 1966, 91, 742-743. DOI: https://doi.org/10.1039/an9669100742

Gonzalez-Rodr?guez, J., Pérez-Juan, P. and M.L. De Castro, M.L. Talanta 2003, 59, 691-696. DOI: https://doi.org/10.1016/S0039-9140(02)00612-4

Qi, X., Zhang, Y., Tu, R., Lin, Y., Li, X. and Q. J. Appl. Microbiol. 2011, 110, 1584-1591. DOI: https://doi.org/10.1111/j.1365-2672.2011.05014.x

Kazys, R., Rekuviene, R., Sliteris, R., Mazeika, L. and Žukauskas, E. Ultrasonic technique for monitoring of liquid density variations. Vol. 86. 2015, 015003. DOI: https://doi.org/10.1063/1.4905570

Geier, D., Heermann, K. Hussein, M. and Becker, T. Eng. Life Sci. 2014, 14,433-441. DOI: https://doi.org/10.1002/elsc.201300030

Vatandas, M., Koc, A.B. and Koc, C. Eur. Food Res. and Technol. 2007, 225, 525-532. DOI: https://doi.org/10.1007/s00217-006-0448-0

Smith, N.B.; Webb, A. Introduction to medical imaging: physics, engineering and clinical applications. Cambridge university press, 2010. DOI: https://doi.org/10.1017/CBO9780511760976

Hughes, J.F.; Van Dam, A.; Foley, J.D.; McGuire, M.; Feiner, S.K.; Sklar, D.F; Akeley, K. Computer graphics: principles and practice. Pearson Education, 2014.

Scott, A.J. and Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics, 1974, 507-512. DOI: https://doi.org/10.2307/2529204

Ruxton, G.D. Behav. Chem. Eco. 2006, 17, 688-690. DOI: https://doi.org/10.1093/beheco/ark016

Keskino?lu, C., Analiz Ve Proses Takip Çal??malar? ?çin Ultrasonik Cihaz Tasar?m? Ve Üretimi (Ultrasound Device Design And Production For Analysis And Process Monitoring Studies), in Department of Biomedical Engineering. 2019, Cukurova University.

TDC1000-TDC7200EVMUser’sGuide, TDC1000-TDC7200EVM User’s Guide , http://www.ti.com/lit/ug/sniu021a/sniu021a.pdf. 2015.

TDC1000 Ultrasonic Sensing Analog Front End (AFE) for Level Sensing, F.S., Concentration Sensing, and Proximity Sensing Applications, http://www.ti.com/lit/ds/symlink/tdc1000.pdf. 2015.

×

Published

2019-12-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 41 42 43 44 45 46 

You may also start an advanced similarity search for this article.

Loading...