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Abstract This study shows that genetic algorithm (GA) is a suitable method for selecting wavelengths for 
partial least squares (PLS) calibration of mixtures with almost identical spectra without loss of prediction 
capacity employing spectrofluorimetric method. A training set of mixtures containing different concentrations 
of ofloxacin (OFL) and riboflavin (B2) were prepared to be used as calibration set to check the prediction ability 
of GA-PLS models due to spectral overlapping of these constituents. Each model was validated using a 
validation set and then real samples were analyzed. Linear calibration curves were obtained in the 0.5-5.0 and 
2.0-10.0 µg mL-1 range for ofloxacin and riboflavin, respectively. To preprocess the data matrices, the 
orthogonal signal correction (OSC) was used and the analysis results were statistically compared. The methods 
accuracy for simultaneous determination of ofloxacin and riboflavin, were evaluated by the root mean square 
errors of prediction (RMSEP) which were 0.0868 and 0.158 for ofloxacin and riboflavin, respectively, and 
relative standard error of prediction (RSEP) which were 2.738 and 2.846 for ofloxacin and riboflavin, 
respectively using OSC-GA-PLS models. This procedure allows the simultaneous determination of OFL and 
B2 in human urine and serum samples with good reliability of the determination.  
Keywords: : Ofloxacin; riboflavin; spectrofluorimetry; partial least square; genetic algorithms; orthogonal 
signal correction. 
  
Resumen. En este estudio se muestra que los algoritmos genéticos (GA) son un método adecuado para 
seleccionar longitudes de onda para calibrar métodos de mínimos cuadrados parciales (PLS) de mezclas, con 
espectros casi idénticos sin perder la capacidad de predicción al utilizar el método espectrofluorimétrico. Se 
preparó un conjunto de entrenamiento de mezclas que contenían diferentes concentraciones de ofloxacina 
(OFL) y riboflavina (B2), que se usaron como un conjunto de calibración, para verificar la capacidad predictiva 
de los modelos GA-PLS debidos a la superposición espectral de estos componentes. Cada modelo se comprobó 
usando un conjunto de validación y, posteriormente, las muestras reales se analizaron. Se obtuvieron curvas de 
calibración lineal en los intervalos de 0.5-5.0 y 2.0-10.0 µg mL-1, para ofloxacina y riboflavina, 
respectivamente. Para el preprocesamiento de las matrices de datos, se utilizó la corrección ortogonal de señal 
(OSC) y los resultados del análisis se compararon estadísticamente. La precisión de los métodos para la 
determinación simultánea de ofloxacina y riboflavina se evaluó mediante la predicción de los errores 
cuadráticos medios (RMSEP) que fueron 0.0868 y 0.158 para ofloxacina y riboflavina, respectivamente, y la 
predicción del error relativo estándar (RSEP) que fueron 2.738 y 2.846 para ofloxacina y riboflavina, 
respectivamente, utilizando los modelos OSC-GA-PLS. Este procedimiento permite la determinación 
simultánea de OFL y B2 en orina humana y en muestras de suero con buena confianza en su determinación. 
Palabras clave: Ofloxacina; riboflavina; espectrofluorometría; mínimos cuadrados parciales; algoritmos 
genéticos; corrección ortogonal de señal. 
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Introduction 
    

Several techniques have been used for the determination of ofloxacin and riboflavin. For ofloxacin, 
some reported methods include high performance liquid chromatography (HPLC) [1-3], TLC [4], differential 
pulse polarography [5], fluorimetry [6-8], spectrophotometry [9,10], capillary electrophoresis [11,12], and flow 
injection analysis [13,14].  For riboflavin, some analytical procedures that have been used are fluorimetry 
[15,16], spectrophotometry [17,18], HPLC [19,20], and capillary electrophoresis [21].  

The simultaneous determination of ofloxacin and riboflavin mixtures using any of the above-
mentioned methods is a difficult problem since there usually exist spectral interferences. Recently, partial least 
squares (PLS) to multivariate chemical data, as a widespread quantitative chemometrics method, is becoming 
more common due to the availability of digitized spectroscopic data. PLS is valuable for the resolution of 
complex mixtures of analytes with high degree of spectral overlapping [22]. The PLS method is often used to 
establish relationships between the dependent variables of the activity matrix and the descriptors of the matrix 
as independent variables also called latent variables. Calibration methods, being based on latent variables, allow 
taking into account the whole spectrum without having to perform a previous feature selection. In the last 
decades, it has been recognized that an efficient feature selection can be highly beneficial both to improve the 
predictive ability to the model and to greatly reduce its complexity. 

One of the major challenges in multivariate analysis is to select the combination of variables that 
produces the best result. This goal is attained through the elimination of those variables that produce noise or 
that, although giving good information is strictly correlated with other already selected variables. Feature 
selection is also very important in studies of classification and modeling. Some variable selection methods that 
are often used are stepwise regression [23], simulated annealing [24] and genetic algorithms [25-27].  

The goal of genetic algorithms is to find a solution which optimizes a given response function. These 
algorithms are inspired by the theory of evolution: in a living environment, the best individuals have a greater 
chance of survival and a greater probability to spread their genomes by reproduction. The mating of two “good” 
individuals results in the mixing of their genomes, which may result in a “better” offspring. The terms “good”, 
“best”, and “better” are related to the fitness of the individuals to their environment [28]. GAs consist of five 
basic steps: (1) coding of variables; (2) initiation of population; (3) evaluation of the response; (4) reproduction; 
and (5) mutation. Steps 3–5 alternate until a termination criterion is reached; this criterion can be based on a 
lack of improvement in the response or simply on a maximum number of generations or on the total time granted 
for the elaboration [29]. 

It has been shown that GA can be successfully used as a feature selection technique [e.g., 30-31]. 
Genetic algorithms have found widespread application in several fields involving multivariate calibration due 
to the fact that one of the most important steps in a calibration is the selection of the relevant variables [32,33].  

A second generation fluoroquinolone, ofloxacin (OFL, 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-
1-piperaziny)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (Fig. 1)) is a synthetic antibiotic 
of the fluoroquinolone drug family [34]. This antibacterial agent is vastly utilized in the treatment of respiratory 
tract, urinary tract and tissue based infections caused by Gram-positive and Gram-negative bacteria [35]. 
Bacteria multiplication is prevented by ofloxacin via the inhibition of the reproduction and repair of genetic 
material (DNA).  Ofloxacin is also available for topical use, as eye and ear drops. Monitoring of OFL 
concentrations in real samples is vital in order to adjust the drug dosage and study drug-drug interactions [36]. 
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Fig. 1. Chemical structure of ofloxacin 

 
 
 
Vitamin B2, 7,8-Dimethyl-10-[(2S,3S,4R)-2,3,4,5- tetrahydroxypentyl]benzo[g]pteridine-2,4-dione 

(Fig. 2), also called riboflavin, is one of the 8 B vitamins. Riboflavin has an important role in cell growth and 
synthesized by microorganisms and higher vegetables [37]. Riboflavin, is an easily absorbed micronutrient with 
a significant role in maintaining human and animal health. It plays a key role in energy metabolism and in the 
metabolism of fats, ketone bodies, carbohydrates and proteins. Milk, cheese, leafy green vegetables, liver, 
kidneys, legumes, tomatoes, yeast, mushrooms and almonds [38] are good sources of vitamin B2, but exposure 
to light destroys riboflavin. Riboflavin deficiency causes symptoms such as wounds around the mouth and lip, 
dry eye disease, and corneal ulcer. The high consumption of it causes itching, numbness, and allergy to light 
and also high consumption of it can affect the results of urine analysis. So, controlling the amount of riboflavin 
in biological samples is considerable. 
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Fig. 2. Chemical structure of riboflavin 
 

 
In this study, a multivariate calibration method, i.e., partial least square (PLS) regression, with a 

previous wavelength selection by genetic algorithms (GA-PLS), was used for the simultaneous determination 
of ofloxacin and riboflavin in human urine and serum samples using spectrofluorimetry. Each method requires 
a calibration step where the relationship between the spectra and the component concentration is deduced. This 
is followed by a validation step for testing the accuracy and precision of the methods where the results of the 
calibration are employed to determine the component concentration from the sample spectrum. Orthogonal 
signal correction (OSC) as a preprocessing technique was utilized to remove the information unrelated to the 
target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for 
PLS calibration of mixtures without loss of prediction capacity using spectrophotometric method. The 
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predictive ability for determination of pharmaceutical in biological samples with spectral overlapping improved 
by employing the proposed method. Several simultaneous determination methods based on the application of 
genetic algorithm have been reported [39-43].  

 
 

Experimental 
 
Reagents and material    

All the reagents and chemicals used in this study were of analytical reagent grade. Ofloxacin and 
riboflavin were purchased from Sigma Aldrich Chemical Co. Hydrochloric acid, sodium hydroxide, boric acid, 
acetic acid and phosphoric acid were supplied by Merck Chemical Co. Britton–Robinson buffer (BRB) as a 
"universal" pH buffer [44] was prepared from boric acid, acetic acid and phosphoric acid that has been titrated 
to the desired pH with 0.1 M NaOH for the range pH 2 to pH 10. A total of 1000 µg mL-1 of stock standard 
solutions of ofloxacin and riboflavin were prepared by dissolving the compounds in sodium hydroxide and 
diluting with double distilled deionized water. These solutions were stored in the dark at 4 °C. 

 
Instrumentation and software 

A Perkin Elmer, LS 45 Spectrofluorimeter enhanced by 150W Xe lamp, which was coupled to a 
computer and equipped with a 1-cm path length quartz cell, was employed for recording the spectra using 
Windows 7 operating system. All the measurements were carried out at the exciting wavelength of 270–460 
nm for every 10 nm, and at the emission wavelength in the range of 465–650 nm for every 1 nm. The pH was 
determined with a 780 Metrohm digital pH meter with a combine glass–calomel electrode. The programs for 
PLS, GA, and OSC calculation were written in MATLAB 2012 (Math Work Inc.) and run on a personal 
computer (CPU 3.0 GHz and RAM 4 GB). The applied OSC version is based on Wold’s algorithm [45]. 

 
Spectral features  

Fig. 3 illustrates the emission spectra in aqueous solution of the individual ofloxacin and riboflavin 
and their mixture at pH 4.5. As shown in this figure, there is an obvious overlapping of the two spectra. This 
prevents the simultaneous determination of ofloxacin and riboflavin by direct spectrofluorimetric 
measurements. To overcome this problem, a suitable and simple technique, which presents a good recovery, is 
PLS regression. Spectra of mixture of two components solutions were recorded, and the data were digitized and 
stored for later treatment. 

 

 
Fig. 3. Emission spectra of ofloxacin, riboflavin and their mixture at pH 4.5 
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Calibration and validation set 
A training set including sixteen samples was prepared to be used as a calibration set. The calibration 

matrix was experimentally designed over the linearity ranges of 0.5-5.0 µg mL-1 for ofloxacin and 2.0-10.0 µg 
mL-1 for riboflavin (Table 1).  
 
Table 1. Concentration data of the different mixtures used in the calibration set 

No. Ofloxacin (µg mL-1) Riboflavin (µg mL-1) 
1 0.5 2.0 
2 0.5 4.5 
3 0.5 7.0 
4 0.5 10.0 
5 1.5 2.0 
6 1.5 4.5 
7 1.5 7.0 
8 1.5 10.0 
9 3.5 2.0 
10 3.5 4.5 
11 3.5 7.0 
12 3.5 10.0 
13 5.0 2.0 
14 5.0 4.5 
15 5.0 7.0 
16 5.0 10.0 

 
 
Five samples not included in the previous set were also prepared to be used as a validation set as 

presented in Table 2. 
 
 
 

Table 2. Concentration data of the different mixtures used in the validation set 
No Ofloxacin (µg mL-1) Riboflavin (µg mL-1) 
1 1.0 9.0 
2 2.5 5.0 
3 3.5 7.0 
4 4.0 4.5 
5 5.0 3.5 

 
 
 

Real samples preparation  
Samples containing 10 mL of urine and serum were collected from 25–30-year old healthy volunteers 

to validate the proposed method. The samples were transferred into centrifuge tubes and centrifuged at 3,500 
rpm for five minutes. Thereafter, the clear supernatant was poured into a flask and the pH was adjusted to 4.5., 
followed by spiking with standard 0.5-5.0 and 2.0-10.0 µg mL-1 ofloxacin and riboflavin solutions, respectively. 
The preparation was analyzed in three replicates. 
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Results and discussion 
 
Optimization of experimental condition  

To find the optimum conditions, the effect of pH values on the spectrum of each component at a fixed 
concentration of each of them was studied. In order to select the optimum pH value at which the minimum 
overlap occurs, effect of the pH of the medium on the emission spectra of OFL and B2 were studied over the 
pH range of 3.0-8.0 (Figures 4 and 5). Nevertheless, pH 4.5 was chosen as the optimum pH for this work 
because both components have maximum emission intensity and minimum overlap at this pH.  

 

 
Fig. 4. Effect of pH on the fluorescence intensity for ofloxacin 
 
 
 

 
Fig. 5. Effect of pH on the fluorescence intensity for riboflavin 
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PLS modeling  
Multivariate calibration is a powerful tool in measurements because it can generate more information 

from data and given that the models can be built more effectively. PLS modeling is a multivariate statistical 
tool that is performed using easily accessible statistical software developed by Herman Wold in 1966 [46].  

Thus, a full-spectrum PLS model for the calibration of samples was prepared and registered for an 
excitation wavelength in the range of 270-460 nm for each 10 nm, while emission wavelength was in the range 
of 465-650 nm for every nm and then subjected to PLS analysis. The model was validated by cross validation 
(leave-one-out) for defining the principal component number. OSC, which is a pre-processing technique that 
removes unrelated parts of target information based on constrained PCA, is an appropriate method for pre-
processing method of PLS calibration without loss of prediction capacity employing spectrophotometric method 
used for filtering calibration set. In PLS model, the cross-validation method was used for selecting the optimal 
number of principal components and the predicted residual error sum of squares (PRESS) is calculated 
(Equation 1). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ (ŷ𝑖𝑖 − 𝑦𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1      
 

(1) 

  
where, 𝑦𝑦𝑖𝑖  is the reference concentration for the ith sample and ŷ𝑖𝑖 represents the predicted concentration in µg 
mL-1. A reasonable choice for the optimal number of factors is one yielding the minimum PRESS. In several 
cases, the minimum PRESS value causes overfitting for unknown samples that are not included in the model 
due to the fact that there are a finite number of samples in the training set. Haaland and Thomas [47] have 
suggested a solution to this problem where the PRESS values for all previous factors are compared to that at 
the minimum. 

Root mean square error of prediction (RMSEP) and relative standard error of prediction (RSEP) values 
were utilized as parameters for the comparison of the models and evaluating the prediction ability of the models 
for the simultaneous determination of ofloxacin and riboflavin. They were calculated as shown in Equations 2 
and 3: 

 

𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 = �∑ (ŷ𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
   

 

 
(2) 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(%) = 100 × �∑ (ŷ𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑(𝑦𝑦𝑖𝑖)2

        

  

 
 

(3) 

 
where, ŷ𝑖𝑖 is the predicted analyte concentration in the sample, 𝑦𝑦𝑖𝑖  is the observed value of the analyte 
concentration in the sample, and 𝑛𝑛 is the number of samples used in the validation set. 

 
GA-PLS modeling 

Genetic algorithms as intelligent selection techniques are suitable for selecting a set of wavelengths 
for PLS calibration of mixtures with almost identical spectra. In order to optimize the selected wavelengths in 
the range of spectra consisting of hundreds of data points, spectrophotometric method has been carried out, 
without losing predictability [48]. The summary parameters of genetic algorithms used in this study are listed 
in Table 3.  Prior to performing the GA-PLS, wavelengths were mean-centered. After running of GAs for 
variables, the selected wavelengths were used to run PLS. The orthogonal signal correction was used for 
preprocessing of data matrices and the prediction results of model, with different methods, were statistically 
compared. 
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Table 3. Parameters of the genetic algorithms and specifications 
Parameter Specifications 

Population size 64 
Regression method PLS 
Probability of cross-over 50 % 
Maximum number of generations 100 
Window size for smoothing 1 
Maximum number of components Determined by cross-validation 

on the model 
Cross-over type Double point 
Mutation rate 0.005 

 
 
 

Selection of wavelengths 
The genetic algorithm was run for the calibration set with 186 variables in the range of 465–650 nm, 

using a PLS regression method. The maximum number of factors which were determined by cross-validation 
on the model consisted of all the variables. The GA procedure was repeated 10 times to obtain the optimum set 
of wavelengths for OFL and B2 determining. The variables selected by GA were 44 wavelengths. Selected 
wavelengths were utilized for PLS modeling. The variables were selected based on the high spectral overlapping 
of their selection. The wavelengths of selection from 10 runs of GA are illustrated in Figure 6. After GA, 44 
wavelengths were selected for OFL and B2 determination. 

 

 
Fig. 6. Selection of wavelength for determination 

 
 
 

Determination of ofloxacin and riboflavin in the test set mixtures 
The PLS, OSC-PLS, and GA-OSC-PLS methods were applied for the spectrofluorimetric concurrent 

monitoring of OFL and B2. Several statistical parameters have been used for the evaluation of the suitability of 
the developed models. The statistical parameters obtained by these methods are listed in Table 4. The predictive 
capabilities of the methods were determined using 5 test mixtures. It is evident that the good results were 
achieved in GA-OSC-PLS model and the amounts of PRESS, RMSED and RSEP (%) for this method are lower 
than those for the other methods. 

0

20

40

60

80

100

120

400 450 500 550 600 650

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Wavelenght, nm

Ofloxacin

Riboflavin



Article  J. Mex. Chem. Soc. 2019, 63(4) 
Regular Issue 

©2019, Sociedad Química de México 
ISSN-e 2594-0317 

 
 

226 
 

Table 4. Added and obtained results of the prediction set of ofloxacin and riboflavin using different methods 
(µg mL-1) 

Added Obtained 
(PLS) Obtained (OSC-PLS) Obtained (GA-OSC-PLS) 

OFL B2 OFL B2 OFL B2 OFL B2 
1.0 9.0 0.88 8.36 0.97 8.76 0.98 8.88 
2.5 5.0 2.22 5.17 2.41 4.88 2.47 4.96 
3.5 7.0 3.39 6.71 3.57 7.19 3.48 7.08 
4.0 4.5 3.87 4.35 3.86 4.41 3.91 4.46 
5.0 3.5 5.24 3.69 5.12 3.6 4.96 3.55 

RMSEPa  0.189 0.341 0.098 0.159 0.047 0.073 
RSEPb  5.445 5.567 2.817 2.594 1.362 1.189 

PRESSc  0.179 0.581 0.048 0.126 0.011 0.026 
R2  0.967 0.859 0.980 0.945 0.997 0.995 

LOD, (µg mL-1)  0.168 0.587 0.136 0.437 0.084 0.206 
a Root mean squares error of prediction 
b Relative standard error of prediction 
c Prediction error sum of squares  

 
 
 

Determination of ofloxacin and riboflavin in real samples 
In order to determine the predictive capability of the proposed methods, several spiked biological 

samples were used. The results obtained by applying OSC-PLS and GA-OSC-PLS algorithms to nine urine 
samples and three serum samples are presented in Tables 5 and 6 respectively. The results revealed that 
satisfactory recovery for ofloxacin and riboflavin can be achieved using the recommended procedures. 
Moreover, it can be concluded that GA-OSC-PLS method is superior to OSC-PLS method in the simultaneous 
determination of OFL and B2 in complex matrices, such as human urine and serum, without considerable error. 
Thus, the GA-OSC-PLS model is preferable in predicting the concentrations of OFL and B2 in real matrix 
samples. The average recoveries in complex matrices (biological samples) are also summarized in Tables 5 and 
6. 

Three replicate experiments on a urine sample without addition of standard were also performed. The 
fluorescence intensity at the excitation wavelengths, at the linearity ranges of OFL and B2 were about 0.01±0.4 
and 0.07±0.3 respectively, which were insignificant. 

 
 

Table 5. Results of analysis of human urine samples (µg mL−1) by GA-OSC–PLS 

Samples 
Added OFL B2 

OFL B2 Obtained Error (%) Obtained Error 
(%) 

Urine sample 1 1.5 3.25 1.48±0.4 1.33 3.32±0.6 2.15 
Urine sample 2 4.5 6.5 4.53±0.3 0.67 6.43±0.2 1.08 
Urine sample 3 2.0 5.5 1.97±0.6 1.50 5.60±0.5 1.81 
Urine sample 4 3.5 8.0 3.47±0.3 0.86 7.93±0.3 0.87 
Urine sample 5 0.55 3.0 0.53±0.5 3.64 2.95±0.5 1.67 
Urine sample 6 3.0 4.5 2.96±0.2 1.37 4.56±0.6 1.33 
Urine sample 7 2.75 7.0 2.72±0.5 1.09 6.94±0.4 0.86 
Urine sample 8 4.25 8.5 4.29±0.4 0.94 8.58±0.2 0.94 
Urine sample 9 1.25 4.0 1.28±0.3 2.40 3.95±0.2 1.25 
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Table 6. Results of analysis of human serum samples (µg mL−1) by GA-OSC–PLS 

Samples Added OFL B2 
OFL B2 Obtained Error (%) Obtained Error (%) 

Serum sample 1 4.75 3.5 4.71±0.5 0.84 3.58±0.3 2.28 
Serum sample 2 2.25 5.5 2.28±0.5 1.33 5.61±0.4 1.82 
Serum sample 3 1.5 8.5 1.47±0.2 2.0 8.58±0.2 0.94 

 
 

Conclusion 
 
This work showed that genetic algorithm is a very useful tool in selection of wavelength with the 

potential of estimating OFL and vitamin B2 in biological (human urine and serum) samples, which has high 
spectral overlapping, without prior extraction. PLS, OSC-PLS and GA-OSC-PLS were used for fluorescence 
spectra deconvolution and simultaneous quantitation of ofloxacin and riboflavin. The results were statistically 
compared with each other and satisfactory results were obtained with GA-OSC-PLS for each. The RMSEP and 
RSEP of the full-spectrum PLS model and GA-OSC-PLS model were compared for considering GA effecting. 
The capability of the proposed method for the analysis of real samples was also evaluated by determination of 
ofloxacin and riboflavin in urine and serum fluids with satisfactory results. In conclusion, the model developed 
by the GA-OSC-PLS method has more predictive capability compared with PLS and OSC-PLS methods 
because in GA-OSC-PLS modeling only some variables are appropriate for prediction and eliminating the 
irrelevant variables can enhance the predictive ability.  
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