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Multipoint calibration (Calibration curve) 
 
 

Most methods in analytical chemistry uses the linear function Eq. 1 as calibration technique to 
determine the amount of analyte in a sample. The least square method (LSM) is often used to estimate the 
slope (a) and the linear coefficient (b) of the calibration curve, Eqs 2 and 3, respectively [1-4]. 

According to this method (LSM), the most adequate calibration curve is the on that results the 
lowest value for the quadratic sum of the residues, which are obtained by the difference between the 
analytical signal yi and the expected analytical signal ŷi Eq. 4 for a set of “n” experimental points [4,5]. 

 
 

         (1) 
 
where: 
 

y = instrumental response 
a = slope 
x = mass fraction 
b = linear coefficient 
 
 

  ;   (2) 

 
 
 
 

         (3) 
 
 
where: 

 = mass fraction 

 = instrumental response i 
n = number of measurements for calibration 

 = mean instrumental response 
 = mean mass fraction levels 

 
 
 

         (4) 
 
 

 = residue 

 = instrumental response i 

 = instrumental response predicted by the calibration equation 
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iŷ



Supplementary Information  J. Mex. Chem. Soc. 2018, 62(2) 
Special Issue 

©2018, Sociedad Química de México 
ISSN-e 2594-0317 

ISSN 1870-249X 
 

3 
 

From the parameters “a” and “b”, it is possible to calculate the analyte mass fraction in the sample 
(x0) by the interpolation of the equation of the line obtained from the least squares method, according to 
Eq. 5. 
 

     
  (5) 

 
 

If a statistical model used to describe the calibration curve is adequate, then the residues represent 
only the random errors of the experimental measurements of y.  

To confirm the absence of systematic errors, visual inspection of the residue graphic (y-axis) 
versus mass fraction levels (x-axis) is recommended, these graphs can provide the first indication of 
possible non-linearity, in addition to being able to highlight a heteroscedastic behavior of the data [5]. In 
these graphs, the residues must have constant variance and must be randomly distributed throughout the 
calibration range. If the residues increase or decrease proportionally with the increase in mass fraction, then 
the data are heteroscedastic and the use of the regression is not indicated. If the data present positive residues 
followed by negative residues, for example, then the calibration function may not be linear and the 
suitability for another mathematical model should be investigated. [6] 

The EURACHEM/CITAC (1998) [7] also suggests that in case of heteroscedasticity, the 
calibration data should be treated by the weighted least squares method. Additionally, Souza and Junqueira 
(2005) [1] reported that the LSM has the disadvantage of being very sensitive to the presence of outliers 
and Miller (1991) [6] described that even calibration curves with large random errors in the y-axis and 
evident curvature can present R2 values near 1. 

Outlier tests are applied to detect and/or remove discrepant values [5]. The main tests used are of 
Dixon, Chauvenet and Grubbs. 

In this work, it was utilized the Grubbs’ test for outliers. The Grubbs’ test, first checks the existence 
of an aberrant value (the minimum value and/or the maximum value of the data set) by comparing with 
value of Grubbs (Gcalc_1; Eq.6) and the critical value (Gcrit), for a given level of significance. When 
Gcalc_1>Gcrit the suspected value should be discarded [8].  

 
 
 

        
(6) 

 
 
where: 

 = calculated value of Grubbs for a suspected value 

 = suspected value 
 = arithmetic mean of the experimental set 
 = standard deviation of the experimental set 

 
 
If a suspected value is discarded, then a new test must be performed for new data set, until there 

are no more discrepant values [8]. 
 

The evaluation of the normality of the residues of the calibration curve is another important test to 
be performed. The normality of the residues can be tested by the Shapiro-Wilk test Eq. 7 [9].  
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       (7) 

 

 

 
 

where: 
 = calculated Shapiro-Wilk value 

 = value of each (residue of the calibration curve) in ascending order 

 = value of the residue n-i + 1 

 = constants generated by means, variances and covariance of statistical order of a sample of 
size "n" for a Normal distribution [9]. 

 
 

According to this test, if Wcalc>Wstat for the established level of significance, then the residues of 
the calibration curve can be considered to come from a normal population [9].  

The homoscedasticity of the curve was also investigated. The homoscedasticity test evaluates 
whether the variances of the curve residues are constant along the calibration range. This parameter can be 
evaluated by the Cochran’s test and applied when the number of observations is the same for all mass 
fraction levels Eq. 8 [10]. 

 

       (8) 
 

 
where: 

Ccalc = calculated Cochran's value 

 = value of the maximum variance selected from instrumental responses between mass 
fraction levels i 

 = sum of the variances of the instrumental responses for each level of mass fraction i 
 

The Ccalc value is then compared with the tabulated value Ctab for a given level of significance. If 
Ccalc < Ctab the homoscedasticity is confirmed and, therefore, there is no significant difference between the 
variances of the responses along the concentration range [10]. However, if the Cochran test indicates 
heteroscedasticity, the regression should be obtained by the weighted least squares method [1,10,11].  

Serial correlation of residues (autocorrelation) may cause underestimation of variance and 
confidence interval and may lead to erroneous inferences, such as indicating false significance of regression 
coefficients. Thus, assuming that residues are independent variables, all series correlations are equal to 0, 
that is, ρs = 0. The Durbin-Watson statistical test is used to test whether the null hypothesis ρs = 0 is true 
according to Eq. 9 [1]: 
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        (9) 
 

where: 
•  = Durbin-Watson statistic 

 = residue i 

 = residue immediately prior to residue i 

 
The value of Durbin-Watson varies from 0 to 4 with an average of 2. If the calculated value 

converges to 2, this means that there is no autocorrelation, on the other hand, if it approaches 0 or 4, 
autocorrelation increases. Thus, a value of d = 0 indicates perfect positive correlation while a value of d = 
4 indicates perfect negative correlation. In practice, the test consists of comparing the value of “calculated 
d” (dcalc) with the lower limit (dL) and the upper limit (dU). 

In order to test for positive autocorrelation at a given level of significance, the following criteria 
must be observed: 

 
If d<dL - there is statistical evidence that the errors are positively autocorrelated. 
If d>dU - there is no statistical evidence that the errors are positively autocorrelated. 
If dL <d<dU - the test is inconclusive. 
 
The limit values for dL and dU depend on the level of significance, on the number of residues and 

on the number of predictors [1]. The independence of the residues can be graphically illustrated by plotting 
each value of ei (x-axis) versus the respective value ei-1 (y-axis), which should indicate a random distribution 
[1].  

The next parameters to be tested in the calibration curve are the lack of fit and the significance of 
the regression, which can be evaluated through the F test [12,13]. In this test, the quadratic sum of the 
residues of the model (SSR) is decomposed into the quadratic sum corresponding to the pure error (SSPE) 
and quadratic sum corresponding to the lack of adjustment (SSLF) and they can be evaluated by Analysis 
of Variance (ANOVA).

 Table 1. Analysis of variance table 

Source of Variation Sum of Squares (SS) Degrees of 
Freedom (υ) Mean Square (MQ) Fcalc 

Regression (R)  p-1 MSR = SSR/(p-1) 
MSR/MSE 

Residual error (E)  n-p MSE = SSE/(n-p) 

Lack of fit (LF)  k-p MSLF = SSLF/(k-p) MSLF/MSP
E Pure error (PE)  n-k MSPE = SSPE/(n-k) 

Total  n-1 --- --- 

= number of measurements at each mass fraction level, = predicted values for each measurement i, = mean 

value of all measured values,  = instrumental response for measurement i, = mean instrumental response at each 
mass fraction level j,  = number of parameters of the model, = number of measurements for the calibration curve, 

= number of mass fraction levels on the x-axis. SOURCE: [¡Error! Marcador no definido., ¡Error! Marcador no 
definido.]  
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By dividing the quadratic sum of the pure error (SSPE) and the quadratic sum of the lack of 
adjustment (SSLF) by the respective degrees of freedom (υ), it is possible to obtain the quadratic mean due 
to the pure error (MSPE) and the quadratic mean due to the lack of fit (MSLF). It is expected that for a 
well-adjusted model, the quadratic mean due to lack of fit (MSLF) reflects only the random errors. 
Therefore, the MSLF value should not be significantly greater than the MSPE value.  

To test if MSLF>MSPE, the MSLF/MSPE ratio is compared with the distribution value of F for 
the corresponding degrees of freedom (Ftab_1). When the value of MSLF/MSPE<Ftab_1 it is an indicative that 
the error due to the lack of fit is not significantly greater than the pure error and the model can be considered 
satisfactory [13]. 

Another parameter to be evaluated by the ANOVA test (Table 1) is the significance of the 
regression, made by comparing the ratio between the mean square of the regression (MSR) and the quadratic 
mean of the residue error (MSE) with the value of F for the respective degrees of freedom (Ftab_2). Thus, it 
can be concluded that the greater the value of MSR/MSE, the better the significance of the regression, and 
if MSR/MSE>Ftab_2 it can be concluded that the regression has statistical significance [13]. 

Thus, if the experimental data of the calibration curve are satisfactory, the linear adjustment 
obtained by the LSM can be used to determine the concentration of analyte in the sample. 
 
 
Sources of uncertainty 
 
The uncertainty budget was carried out employing classic method according to ISO GUM guide. 
 
 

Multipoint calibration (Calibration curve) 
The measurement uncertainty was estimated from to specification of the measurand. The 

measurand is the mass fraction of SeMet in the yeast sample (Saccharomyces cerevisiae) and is defined by 
the Eq. 10. 

 

    (10) 
 
Where: 

w(Se) = mass fraction of SeMet in the yeast sample 
w(Se)0 = mass fraction of SeMet in the analytical solution 
mtn = total mass associated to dilution(s) (1, 2, ..., n) 
msn = sample mass associated to dilution(s) (1, 2, ..., n) 
dfn = dilution fator(s) 
frep = factor of the instrumental repeatability 
fext = factor of the extraction procedure repeatability 
mi = initial mass of the sample before water removal  
mf = final mass of the sample after water removal 
fmoist = factor of the moisture procedure repeatability 
moist = moisture of the sample 

 
From the specification of the measurand Eq. 10, the cause and effect diagram was constructed and 

the components that contribute to the measurement uncertainty include the uncertainty associated with the 
mass fraction of SeMet in the analytical solution (uw(Se)0), uncertainty associated with sample dilution (udfn), 
uncertainty associated with sample extraction (ufext), uncertainty associated with instrumental repeatability 
(ufrep) and uncertainty associated with moisture (umoist). 
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Erro! Fonte de referência não encontrada. - Ishikawa (cause and effect) diagram of the uncertainties for the 
proposed method of fraction mass SeMet determination in the Saccharomyces cerevisiae by calibration 
curve 
 

The SeMet mass fraction in the analytical solution (w(Se)0) was obtained by the linear regression 
using the least square method (LSM) and the uncertainty is considered of the Type A, this uncertainty 
source (uw(Se)0) was estimated according to the EURACHEM (11). 
 
 

     

(11)  
 

Where: 
 = uncertainty associated to mass fraction of the SeMet in the analytical solution 

 = standard deviation of the residues of the calibration curve 
a = slope of the calibration curve 
p = number of measures to determine w(Se)0. 
n = number of instrumental replicates of the sample 

 = Sum of the residual of standard mass fraction 
 = mass fraction of the SeMet in the analytical solution 

 = average value of the levels of mass fraction using in the calibration curve 
 

 
The factor associated to the instrumental repeatability (frep) is considered uncertainty of Type A 

and had important contribution to the final uncertainty. This source of the uncertainty (ufrep) was estimated 
according to Eq. 12. 
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Where: 
 = uncertainty associated to instrumental repeatability 

 = standard deviation of the instrumental replicates  

 = number of instrumental replicates 
 

The factor associated to the moisture of the sample (fmoist) is also an uncertainty of Type A and was 
estimated according to Eq.13. 

 

       (12) 

 
Where: 

 = uncertainty associated to variability of procedure for moisture determination 

 = standard deviation of the moisture content 

 = number of samples using to determine the moisture 
 

The factor associated to the extraction procedure (fext) is an uncertainty of Type A and was 
estimated according to Eq. 14. 
 

        (13) 
 
Where: 

 = uncertainty associated to extraction procedure 

 = standard deviation between the averages of fraction masses of the samples submitted to the 
extraction procedure 

 = number of samples submitted to the extraction procedure 
 

The uncertainties associated with weighing procedures (mi, mf, mtn, msn) are uncertainties of type 
B. They are determined according to Eq 15. 
 

        (14) 

 
where: 

 = uncertainty associated to mass 
 = expanded uncertainty of the analytical balance 
 = coverage factor of the analytical balance 

 
After defining the measurand, identifying the sources of uncertainty, constructing the cause and 

effect diagram and estimating the uncertainty of the input quantities, the next step of estimating the 
measurement uncertainty by the classical method was to determine the sensitivity coefficients (Ci). These 
coefficients are used to describe how the input variable influences the output quantity and are calculated by 
partial derivative of the input variable xi with respect to the output quantity y, according to Eq. 16. 
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       (15) 

 
 
Where: 

ci = sensitivity coefficient of the variable i 
 = partial derivative of the output quantity y 
 = partial derivative of the input variable xi 

 
So, the partial derivatives used in this work are present in the Table 1. 

 
Table 1. Partial derivative for estimative of the measurement uncertainty of the mass fraction of 
selenomethionine. 

Partial derivative Estimative Unit 

  --- 

  mg kg-1 g-1 

  mg kg-1 g-1 

  --- 

  --- 

  mg kg-1 g-1 

  mg kg-1 g-1 

  mg kg-1 

 
The uncertainty combined (uc) was estimated from all the uncertainty sources using the law of 

propagation of uncertainties. So, as all the input uncertainties are independent variables, the Eq. 17 was 
used to estimate the uc.  
 

 (16) 
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As described in ISO GUM, the uncertainties may be classified into two kinds: type A and type B. 
The first one is associated with statistical analysis of a series of observations, whereas Type B is approached 
by means other than the statistical analysis of a series of observations. This information is important in 
calculating the effective degrees of freedom Eq. 18 that is necessary to find the coverage factor (k) 
used in the expanded uncertainty U, Eq.19. 

 

       

(17) 

 
Where: 

 = effective degrees of freedom  

= uncertainty sources of the Type A 

= degrees of freedom of the respective uncertainty sources of the Type A 
 

 
 

       (18) 
 

where: 
k = coverage factor for effective degrees of freedom ( eff) at a 95% confidence level 
U = the relative expanded uncertainty. 

 
Finally, the measurement result of the measurand was declared as w(Se) ± U, complemented with 

information on probability and coverage factor k. 
 
 
 
Single point calibration 
 
 

The measurement uncertainty was estimated from to specification of the measurand. The 
measurand is the mass fraction of SeMet in the yeast sample (Saccharomyces cerevisiae) and is defined by 
the Eq.  
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where: 

wSeMet = mass fraction of SeMet in the sample 
 = average of instrumental responses of SeMet in the analytical solution of the sample 

 = mass of the sample 
 = average of instrumental responses of SeMet in the analytical solution of the standard 

 = mass of SeMet in the standard  
mi = initial mass of the sample before water removal  
mf = final mass of the sample after water removal 
fmoist = factor of the moisture procedure repeatability 

 

effυ

∑
=

= N

i i

i

c
eff u

u

1

4

4

υ

υ

effυ

iu

iυ

cukU .=

υ

sampley

samplex

dardsy tan

SeCRMx



Supplementary Information  J. Mex. Chem. Soc. 2018, 62(2) 
Special Issue 

©2018, Sociedad Química de México 
ISSN-e 2594-0317 

ISSN 1870-249X 
 

11 
 

 
In this way, the cause and effect was constructed according to Fig. 1. 

 

 
Fig. 1. Ishikawa (cause and effect) diagram of the uncertainties for the proposed method of fraction mass 
SeMet determination in the Saccharomyces cerevisiae by single point calibration. 
 
 

The uncertainty sources uysample, uyCRM, umoist and urep, should be considered as uncertainty of Type 
A and are calculated according to Eq. 21. 

 
 

        (20) 

 
where: 

 = uncertainty associated to standard deviation 
 = standard deviation  

 = number of replicates  
 

On the other hand, the uncertainty associated with xMRC (uxMRC) is calculated according to Eq. 22. 
 

 

𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = �𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥2 + 𝑢𝑢𝑚𝑚2       (21) 

 
 
where: 
 

 = uncertainty associated to mass fraction of SeMet of the standard 

 = uncertainty expanded associated to certificate of the standard 

 = uncertainty associated to mass 
 

Once the sources of uncertainty for the wSeMet were estimated, the sensitivity coefficients (Table 2) 
were determined, based on the definition of the measurand, according to Eq. (16) and Eq. (20). 
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Table 2. Partial derivative for estimative of the measurement uncertainty of the w(Se)0 by the one point 
calibration. 

Partial derivatives Estimative Unit 
𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

 
𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

= �
1

𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
� . �

𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

� . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �
𝑚𝑚𝑚𝑚
𝑚𝑚𝑓𝑓

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆� 
mg kg-1 cps-1 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

= �−
𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
2 � . �

𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

� . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �
𝑚𝑚𝑚𝑚
𝑚𝑚𝑓𝑓

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆� 
1 kg-2 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥  

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥

= �
𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
� . �

1
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

� . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �
𝑚𝑚𝑚𝑚
𝑚𝑚𝑓𝑓

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆�
 

1 kg-1 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥  

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

= �
𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
� .�−

𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥2 � . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �

𝑚𝑚𝑚𝑚
𝑚𝑚𝑓𝑓

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆�
 

mg kg-1 cps-1 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠  

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠

= 1
 

- 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑚𝑚  

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑚𝑚

= �
𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
� . �

𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

� . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �
1
𝑚𝑚𝑓𝑓

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆�
 

mg kg-2 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑓𝑓

 𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑓𝑓

= �
𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆

𝑥𝑥𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆
� . �

𝑥𝑥𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥𝑥𝑥𝑥𝑥

� . 𝑓𝑓𝑟𝑟𝑆𝑆𝑠𝑠. �−
𝑚𝑚𝑚𝑚
𝑚𝑚𝑓𝑓2

. 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆� 
mg kg-2 

𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝜕𝜕𝑚𝑚𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝜕𝜕𝑚𝑚𝜕𝜕𝜕𝜕

= 1 
mg kg-1 

 
 
So, the uncertainty associated with wSe was estimated according to Eq. 23. 
 

 

𝑢𝑢𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐 = �
�𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆

.𝑢𝑢𝜕𝜕𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑆𝑆�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆

.𝑢𝑢𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

.𝑢𝑢𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆

.𝑢𝑢𝜕𝜕𝜕𝜕𝑆𝑆𝑆𝑆𝑆𝑆�
2

+

�𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕𝑟𝑟𝑆𝑆𝑠𝑠

.𝑢𝑢𝜕𝜕𝑟𝑟𝑆𝑆𝑠𝑠�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑚𝑚

.𝑢𝑢𝑚𝑚𝑚𝑚�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝜕𝜕

.𝑢𝑢𝑚𝑚𝜕𝜕�
2

+ �𝜕𝜕𝑤𝑤𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆

.𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑆𝑆�
2

 

           (22) 
 

 
Finally, the next steps were to determine the sensitivity coefficient (Ci), the combined uncertainty 

(uc), the effective degrees of freedom ( ) and the expanded uncertainty (U), which were determined 
according to Eqs 16, 23, 18, 19 respectively. 
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	  = Durbin-Watson statistic
	= number of measurements at each mass fraction level, = predicted values for each measurement i, = mean value of all measured values,  = instrumental response for measurement i, = mean instrumental response at each mass fraction level j,  = number of ...

