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Abstract. A quantitative structure-activity relationship (QSAR) mod-
eling was carried out for the prediction of inhibitory activity of 
1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-li-
poxygenase. Partial least squares (PLS) algorithm was employed to 
model the relationships between molecular descriptors and inhibitory 
activity of molecules using the genetic algorithm (GA) method as vari-
able selection tool. Pre-processing methods such as wavelet transform 
(WT) were also used to enhance the predictive power of multivariate 
calibration methods. To evaluate the models applied in this study (PLS, 
GA-PLS and WT-GA-PLS), the inhibitory activities of several com-
pounds, not included in the modeling procedure, were predicted. The 
results of models showed high prediction ability with root mean square 
error of prediction 0.194, 0.161 and 0.140 for PLS, GA-PLS and WT-
GA-PLS, respectively. The WT-GA-PLS method was employed to pre-
dict the inhibitory activity of the new inhibitor derivatives.
Key words: 1-phenyl[2H]-tetrahydro-triazine-3-one analogues, ge-
netic algorithms, wavelet transform, QSAR, PLS.

Resumen. Se realizó la modelación de una relación estructura-activi-
dad (QSAR, por su siglas en inglés) para la predicción de la actividad 
inhibitoria de análogos del 1-fenil[2H]-tetrahidro-triazina-3-ona como 
inhibidores de la 5-lipoxigenasa. Se utilizó el algoritmo de mínimos 
cuadrados parciales (PLS, por sus siglas en inglés) para simular las 
relaciones entre los descriptores moleculares y la actividad inhibitoria 
de moléculas, usando el método de algoritmos genéticos (GA, por sus 
siglas en inglés) como herramienta de selección de variables. También 
se utilizaron métodos de preprocesamiento como transformada de on-
deleta (WT, por sus siglas en inglés) para incrementar el poder predic-
tivo de los métodos de calibración multivariable. Para evaluar los 
modelos aplicados en este estudio (PLS, GA-PLS y WT-GA-PLS), se 
evaluaron las actividades inhibitorias de varios compuestos no inclui-
dos en el proceso de modelación.  Los resultados de los modelos mos-
traron una alta capacidad predictiva con un error cuadrático medio en 
la predicción de 0.194, 0.161 y 0.140 para PLS, GA-PLS y WT-GA-
PLS, respectivamente. Se utilizó el método WT-GA-PLS para predecir 
la actividad inhibitoria de nuevos derivados inhibidores. 
Palabras clave: Análogos del 1-fenil[2H]-tetrahidro-triazina-3-ona, 
algoritmos genéticos, transformada de ondeleta, QSAR, PLS.

Introduction 

Lipoxygenases (LOs) are a class of widely occurring, non-
heme iron-containing oxygenases that can be isolated from an-
imals, higher plants, and fungi. Currently, three distinct 
mammalian LOs have been characterized, 5-LO, 12-LO, and 
15-LO, which oxygenate arachidonic acid at specific carbon 
centers (C5, C12, and C15, respectively) [1]. The 5-lipoxygen-
ase is the first dedicated enzyme in the biosynthetic pathway 
leading to the leukotrienes. Since leukotrienes have been impli-
cated as important mediators in such diseases as asthma, psori-
asis, ulcerative colitis, and rheumatoid arthritis, the inhibition 
of 5-lipoxygenase offers a potential approach in the therapy of 
such diseases [2]. In the present study, the inhibitory activity of 
1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors 
of 5-lipoxygenase were used to construct a mathematical model 
with structural information, so called a quantitative struc-
ture-activity relationship (QSAR). 

QSAR is an important tool in Agrochemistry, Pharmaceu-
tical Chemistry and Toxicology [3, 4]. QSAR models are math-
ematical equations, which relate chemical structure of a 

compound to its physical, chemical, biological and technologi-
cal properties. The main goal of the QSAR studies is to establish 
an empirical rule or function to relate the structural descriptors 
of compounds under investigation to bioactivities. This rule or 
function is then utilized to predict the same bioactivities of com-
pounds which are not involved in the training set from their 
structural descriptors. Model development in QSAR studies 
comprises different critical steps as (1) descriptor generation, 
(2) data splitting to calibration (or training) and prediction (or 
validation) sets, (3) variable selection, (4) finding appropriate 
model between selected variables and activity and (5) model 
validation [5]. Since a large number of molecular descriptors are 
available for QSAR analysis, the most relevant descriptors 
should be selected. Many variable selection methods such as 
stepwise regression [6], simulated annealing [7] and genetic al-
gorithms [8-10] are available. It has been shown that genetic 
algorithms (GAs) can be successfully used as a feature selection 
technique [11-13].

A GA is a stochastic method to solve optimization prob-
lems defined by a fitness criterion applying evolution hypothe-
sis of Darwin and different genetic functions, i.e. crossover and 
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mutation. Leardi [14] demonstrated that GA, after suitable 
modifications, produces more interpretable results, since the 
selected variables are less dispersed compared to other meth-
ods. Among the investigation of QSAR, one of the most import-
ant factors affecting the quality of the model is the method to 
build the model. Many multivariate data analysis methods such 
as multiple linear regression (MLR) [15, 16] artificial neural 
network (ANN) [17] and partial least squares (PLS) [18] have 
been used in QSAR studies. MLR, as most commonly used 
chemometrics method, has been extensively applied to QSAR 
investigations. However, due to the collinearity between de-
scriptors, MLR is unable to extract useful information from the 
data, and the over-fitting problem will occur as a consequence. 
The artificial neural network (ANN) offers satisfactory accura-
cy in most cases but tends to over fit the training data. The PLS 
method is based on the factor analysis which is originally sug-
gested and chemically applied by Wold et al [19]. In order to 
enhance the predictive power of multivariate calibration meth-
ods, molecular descriptors are often corrected prior to the data 
analysis. One of the data preprocessing techniques is wavelet 
transform (WT) [20], which used to eliminate undesirable 
background effects and enhance the subsequent PLS regression 
model. In this study, the PLS, GA-PLS and WT-GA-PLS meth-
ods were proposed to model and predict the inhibitory activity 
of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibi-
tors of 5-Lipoxygenase.

Material and Computational Methods

Hardware and Software

The computations were made with the ASUS Personal Comput-
er that was equipped with the Windows 7 operating system and 
MATLAB (Version 11.0, Math Work Inc.). All the required 
evaluations for GA variable selection and PLS modeling were 
carried out using the PLS program from PLS-Toolbox Version 
4.0 and MATLAB from Eigenvector Research Inc. The calcula-
tions for data processing implemented in software using MAT-
LAB Wavelet Toolbox and DWT technique. Kennard-Stones 
program was written in MATLAB according to the algorithm 
[21, 22]. ChemOffice package (Version 2013) was used to draw 
the molecular structure and optimization by the AM1. Descrip-
tors were calculated using Dragon software (Milano Chemom-
etrics and QSAR research group, http://www.disat.unimib.it/
chm/). These descriptors are calculated using two-dimensional 
representation of the molecules and therefore geometry optimi-
zation is not essential for calculating these types of descriptors.

Data Set 

The inhibitory activity values of 1-phenyl[2H]-tetrahydro-tri-
azine-3-one analogues were taken from the literature [2]. The 
chemical structures of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues (Fig. 1) and their corresponding inhibitory activity 
values have been listed in Table 1. In order to assure that train-

ing and prediction sets cover the total space occupied by the 
original data set, it was divided into parts of training and pre-
diction set according to the Kennard-Stones algorithm [21, 22]. 
The Kennard-Stones algorithm is known as one of the best 
ways of building training and prediction sets, and it has been 
used in many QSAR studies. The Kennard–Stone algorithm se-
lects a set of molecules in studied set of data, which are uni-
formly distributed over the space defined by the candidates. 
This is a classic technique to extract a representative set of mol-
ecules from a given data set. In this technique the molecules are 
selected consecutively. The first two objects are chosen by se-
lecting the two farthest apart from each other. The third sample 
chosen is the one farthest from the first two objects, etc. Sup-
posing that m objects have already been selected (m<n), the (m 
+ 1)th sample in the calibration set is chosen using the following 
criterion:

{ }< ≤max (min( , ,....... )d d d1r 2r mr max(m r n)  (1)

Where, n stands for the number of samples in the training 
set, djr , j=1,...,m are the squared euclidean distances from a 
candidate sample r, not yet included in the representative set, to 
the m samples already included in the representative set [23].

Molecular Descriptors

A major step in constructing QSAR model is the generation of 
the corresponding numerical descriptors of the molecular struc-
tures. Molecular descriptors define the molecular structure and 
physicochemical properties of molecules by a single number. 
To calculate different kinds of theoretical descriptors for each 
molecule, the Dragon (Milano Chemometrics and QSAR re-
search group, http://www.disat.unimib.it/chm/) software was 
utilized. The Dragon is able to calculate different molecular de-
scriptors such as constitutional, topological, molecular walk 
counts, BCUT, Galvez topol, Charge indices, 2D autocorrela-
tions, charge,  aromaticity indices, Randic molecular profiles, 
geometrical, RDF, 3D-MoRSE, WHIM, GETAWAY, functional 

Fig. 1. Chemical structure of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues.
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Table 1. Structures and observed inhibitory activity of 5-Lipoxygenase of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues.

No.
Substitution log(1/IC50)

X R3′ R5′ R2 R4 R5 obsa

1 CH H H H H CH2OCH2Ph 6.00
2 CH H H H H Bu 5.82
3 CH H H H H i-Pr 5.17
4 CH H H H H Me(R) 5.17

5 b CH H H H H Me2 5.17
6 CH H H H H Et 5.16

7 b CH H H H H Me 4.94
8 CH H H H H CH2OC2H4OMe 4.85

9 b CH H H H H Me(S) 4.85
10 CH H H H H CO2Me 4.70
11 b CH H H H H H 4.68
12 CH H OCH2Ph H H H 5.96
13 CH H Br H H H 5.31
14 CH H Cl H H H 5.20

15 b CH H Et H H H 4.89
16 CH H SMe H H H 4.85

17 b CH H Me H H H 4.82
18 CH H CF3 H H H 4.77
19 CH H F H H H 4.72

20 b CH H CN H H H 4.43
21 b CH H OMe H H H 4.33
22 CH H NO2 H H H 4.31
23 CH H NH2 H H H 3.75
24 CH H Br H H Me 5.59
25 CH H Cl H H Me 5.57

26 b CH H F H H Me 5.20
27 b CH H Me H H Me 4.72
28 CH H H H C(=O)-i-Pr H 5.89
29 CH H H H C(=O)Et H 5.59
30 CH H H H C(=O)Me Me 5.48
31 CH H H H C(=O)Me H 5.47
32 CH H H H OCH2Ph Me 5.37

33 b CH H H H OH Me 5.22
34 CH H H H OEt Me 5.13
35 CH H H H OCH2Ph H 5.08
36 CH H H C(=O)Et C(=O)Et H 4.90
37 CH H H H OMe Me 4.65
38 CH H H C(=O)Me C(=O)Me H 4.40
39 N Br H H H Me 5.62
40 N Br H H H H 5.46
41 N Cl H H H Me 5.46

42 b N Me H H H Me 5.42
43 N Me H H H H 5.26

44 b N OMe H H H Me 5.26
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groups, atom-centered fragments,  properties and empirical. In 
this study, just GETAWAY (geometry, topology, and at-
om-weights assembly) and WHIM (weighted holistic invariant 
molecular) descriptors were used. A total number of 293 de-
scriptors were calculated by Dragon for each molecule and 
60×293 data matrix X was obtained. The rows and columns of 
this matrix are the number of molecules and molecular descrip-
tors respectively.

Discrete Wavelet Transform

Transform-based methods are of fundamental importance in 
signal and image processing. Wavelet transform decomposes a 
signal into a set of basic functions. These basic functions are 
obtained from a single prototype wavelet called mother wavelet 
by dilations and shifting [20]. The discrete wavelet transform 
(DWT) is a linear transformation that operates on a data vector 
whose length is an integer power of two, transforming it into a 
numerically different vector of the same length. It is a tool 
which separates the data into different frequency components, 
and then studies each component with resolution matched to its 
scale. DWT [24] is computed with a cascade of filtering fol-
lowed by a factor 2 sub-sampling (Fig. 2). 

H and L denote high and low-pass filters respectively, ↓2 
denotes sub-sampling. Outputs of these filters are given by 
equations (2) and (3):

∑= −+
=−∞

+∞
a [p] l [n 2p] a [n]j 1

n
j  (2)

∑= −+
=−∞

+∞
d [p] h[n 2p] d [n]j 1

n
j  (3)

The elements aj are used for next step (scale) of the trans-
form and the elements dj, the wavelet coefficients, determine 
the output of the transform. l[n] and h[n] are coefficients of low 
and high-pass filters respectively. It can be assumed that on scale 
j+1 there is only half from number of a and d elements on 
scale j. These elements are called scaling function coefficients. 

Results and discussion 

Principal Component Analysis 

Principal component analysis (PCA) was performed on the cal-
culated structural descriptors to the whole data set (Table 1), for 
investigation the distribution in the chemical space, which 
shows the spatial location of samples to assist the separation of 
the data into training and prediction sets. PCA is a useful multi-

No.
Substitution log(1/IC50)

X R3′ R5′ R2 R4 R5 obsa

45 N Cl H H H H 5.25
46 N F H H H Me 5.18
47 N F H H H H 5.04
48 N OMe H H H H 5.02

49 b N H H H H Me 4.66
50 N H H H H H 4.59
51 CH H Cl H C(=O)Me H 5.89
52 CH H Cl H OH Me 5.41

53 b CH H F H OH Me 5.16
54 CH Me Me H OH H 5.08
55 CH F F H H H 5.05

56 b CH Me Me H H H 4.92
57 b N Cl H H H H 5.48
58 b CH H Cl H H H 5.35
59 b CH H H H H H 4.77
60 b CH Cl Me H H H 5.48

a Observed inhibitory activity. 
b The compounds selected as the test set. 

Fig. 2. DWT tree. (a) H and L denote high and low-pass filters respec-
tively, (b) ↓2 denotes sub-sampling (c) a1 and a2 denote the approxima-
tion of the data and (d) d1 and d2 denote the detail of the data.



Application of Wavelet and Genetic Algorithms for QSAR Study on 5-Lipoxygenase Inhibitors and Design New Compounds 207

variate statistical technique in which new variables (called prin-
cipal components, PCs) are calculated as linear combinations 
of the old ones. These PCs are sorted by decreasing information 
content so that most of the information is preserved in the first 
few PCs. An important feature is that the obtained PCs are un-
correlated, and they can be used to derive scores which can be 
used to display most of the original variations in a smaller num-
ber of dimensions. These scores can also allow us to recognize 
groups of samples with similar behavior. A total of 293 descrip-
tors were initially calculated by PCA for the entire data set of 
60 compounds. The total number of descriptors was reduced to 
35 descriptors by eliminating the descriptors that were deemed 
insignificant (i.e. where the one-parameter correlation confine-
ment with the activity is less than 0.1). The PCA results indicate 
that three PCs (PC1, PC2 and PC3) described 81.35% of the 
overall variances: 47.91%, 19.55% and 13.89% for PC1, PC2 
and PC3, respectively (Fig. 3). As seen in Fig. 3, there is not a 
clear clustering between compounds. The data separation is 
very important in the development of reliable and robust QSAR 
models. The quality of the prediction depends on the data set 
used to develop the model. For regression analysis, the data set 
was separated into two groups, a training set (40 data) and a 
prediction set (20 data) according to the Kennard-Stones algo-
rithm. As shown in Fig. 3, the distribution of the compounds in 
each subset seems to be relatively well-balanced over the space 
of the principal components.

PLS Modeling

The multivariate calibration is a powerful tool for modeling, as 
it extracts further information and allows building more robust 
models [25, 26]. The PLS method is used to establish relation-
ships between the dependent variables of the activity matrix 
and the descriptors of the matrix as independent variables also 
that are called latent variables. Based on the inhibitory activity 
data (Table 1), the data was classified to training and prediction 
sets according to Kennard-Stones algorithm and the PLS model 
was run. The optimum number of factors to be included in the 
calibration model was determined by computing the root mean 
square error of calibration (RMSEC) from cross-validated mod-
els using a high number of factors (half the number of total 

training set + 1). The cross-validation method was employed to 
eliminate only one compound at a time and then, PLS was em-
ployed to calibrate the remaining of the training set. The inhib-
itory activity of the left-out sample was predicted using this 
calibration. This process was repeated until each compound in 
the training set had been left out once. According to Haaland 
suggestion [26], the optimum number of factors selected. As it 
is shown in Fig. 4, the RMSEC is minimized when the number 
of factors is 10, thus, the optimum number of factors for the 
training set of PLS method was chosen to be 10. The data set 
was mean-centered, prior to the PLS analysis.

GA-PLS Modeling

As mentioned before, one of the problems is choosing the set of 
molecular descriptors. GAs as intelligent selection techniques 
[27], was utilized to achieve this objective. The parameters of 
genetic algorithms used in this study are as below: the probabil-
ity of mutation 1% and 90% for crossover, number of runs is 
100 and window size for smoothing is 3.  Prior to performing 
the GA-PLS, all the descriptors were mean-centered. After run-
ning of GAs for variables, the selected descriptors were used to 
run PLS. Among the descriptors calculated, the most significant 
molecular descriptors were identified. Table 2 shows the calcu-
lated descriptors for each molecule, the t values for null hypoth-
esis and their related P values [28]. The number of factors 
reduced to 6 upon the application of GA-PLS (Fig. 4). As 

Fig. 3. Principal components analysis of the descriptors for the data set, (a) PC2 versus PC1, (b) PC3 versus PC1 and (c) PC3 versus PC2.

Fig. 4. Plot of RMSEC versus number of factors.
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shown in Fig. 4, the RMSEC is minimized when the number of 
factors is 6, thus, the optimum number of factors for the train-
ing set of GA-PLS method was chosen to be 6. The present 
study shows that the GAs can be a good method for descriptor 
selection in analysis.

WT-GA-PLS Modeling

In order to enhance the predictive power of multivariate cali-
bration methods, molecular descriptors are often corrected pri-
or to the data analysis. In this case, wavelet transform was used 
as the processing method. When WT-GA-PLS is used the num-
ber of factors reduced to 4 (Fig. 4). Table 2 shows the calculated 
descriptors for each molecule, the t values for null hypothesis 
and their related P values. In order to evaluate the models ap-
plied in this study (PLS, GA-PLS and WT-GA-PLS), the inhib-
itory activities were tested with set of tests. The WT-GA-PLS 
method combines WPT, which performs feature extraction and 
de-noising, GA which optimizes variation and selection of the 
fitness values, as well as PLS, which provides calibration mod-
el and reduces the dimension of the data. To be successful in 
obtaining a reliable result by the WT-GA-PLS method, differ-
ent parameters such as wavelet functions (Coiflet 1, 2...5, and 
Daubechies 6, 7, 8), decomposition level (L = 1–2) and the 
number of PLS factors were tested. In these investigations, 
Coiflet 3, L = 1 and number of PLS factors = 4 were selected as 
the optimal parameters. 

Model Validation and Prediction of Inhibitory Activity

The predictive ability of these methods (PLS, GA-PLS and 
WT-GA-PLS) were investigated by prediction of inhibitory of 
20 molecules (their structures are given in Table 1). The valida-
tion of predictive ability is another key step in the QSAR stud-
ies. Several statistical parameters have been used for the 
evaluation of the suitability of the developed QSAR models for 
prediction of the property of the studied compounds this in-
clude the root mean square error of prediction (RMSEP) and 
relative standard error of prediction (RSEP), validation through 
an external prediction set. 

∑
=

−
=RMSEP
y y

n
( )i, pred i,obsi

n 2
1  (4)

∑
∑

= ×
−

=RSEP
y y
y

(%) 100
( )

( )
i,pred i,obsi

n

i,obs

2
1

2  (5)

where yi, pred is the predicted of the inhibitory activity using 
different model, yi, obs is the observed value of the inhibitory 
activity, and n is the number of compounds in the prediction set. 
The statistical parameters obtained by these methods are listed 
in Table 3.

Table 3 shows RMSEP, RSEP and the percentage error for 
prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-tri-
azine-3-one analogues. As can be seen, the good results were 
achieved in WT-GA-PLS model with percentage error ranges 
from -5.844 to +4.512 % for inhibitory activity of 
1-phenyl[2H]-tetrahydro-triazine-3-one analogues. Other sta-
tistical parameters have been used for the evaluation of the suit-
ability of the developed models for prediction of the activity of 
the studied compounds this include cross validation coefficient 
(Q2 and R2) [29]. These parameters are defined as follows:

Q Y Y / Y Y1 ( ) ( )abs LOO
YY

2
exp

2
exp exp

2∑∑= − − −  (6)

R Y Y / Y Y1 ( ) ( )abs pred
YY

2
exp

2
exp exp

2∑∑= − − −  (7)

As seen in Table 3, these parameters show the good statis-
tical qualities. The plots of the predicted inhibitory activity ver-
sus actual values are shown in Fig. 5 for each model. It is 
possible to see that WT-GA-PLS presents excellent prediction 
abilities when compared with other models. 

Y-randomization Test 

This is a widely used technique to ensure the robustness of a 
QSAR model. In this test, the dependent-variable vector, Y-vec-
tor, is randomly shuffled and a new QSAR model is developed 
using the original independent-variable matrix. The process is 
repeated three times and the average of the three measurements 
showed low R2 values 0.226, 0.241 and 0.254 and Q2 values 
0.137, 0.152 and 0.170 for the PLS, GA-PLS and WT-GA-PLS, 
respectively. If all QSAR models obtained in the Y-randomiza-
tion test have relatively high R2 and Q2, it implies that an ac-
ceptable QSAR model cannot be obtained for the given data set 
by the current modeling method [30, 31].

Table 2. The most significant molecular descriptors used in this study.
Notation Descriptors t value P value

H2v H autocorrelation of lag 2 / weighted by van der Waals volume 8.330 0.000
R2u R autocorrelation of lag 2 / unweighted 6.169 0.000
R1u R autocorrelation of lag 1 / unweighted -6.613 0.000
P2u 2nd component shape directional WHIM index / unweighted -4.575 0.000

R6U+ R maximal autocorrelation of lag 6 / unweighted -4.317 0.000
R7e R autocorrelation of lag 7 / weighted by Sanderson electronegativity -4.018 0.000
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Fig. 5. Plots of predicted versus actual log(1/IC50), (a) PLS, (b) GA-PLS and (c) WT-GA-PLS.

Table 3. Observation and calculation values of log(1/IC50) using PLS, GA-PLS and WT-GA-PLS models.
No. of 

compounds 
(Table I )

Observation
log(1/IC50)

PLS GA-PLS WT-GA-PLS

Predicted Error (%) Predicted Error (%) Predicted Error (%)

5 5.170 4.926 -4.702 5.144 -0.489 5.064 -2.050
7 4.940 4.883 -1.137 4.931 -0.182 4.930 -0.190
9 4.850 4.884 0.719 4.930 1.665 4.930 1.665
11 4.680 4.829 3.196 4.763 1.788 4.800 2.570
15 4.890 5.004 2.335 4.947 1.173 4.854 -0.736
17 4.820 4.892 1.510 4.80 -0.394 4.798 -0.452
20 4.430 4.745 7.112 4.627 4.467 4.545 2.598
21 4.330 4.620 6.713 4.511 4.196 4.418 2.036
26 5.200 4.935 -5.094 5.014 -3.559 5.115 -1.628
27 4.720 4.930 4.461 4.951 4.913 4.933 4.512
33 5.220 4.942 -5.312 4.937 -5.408 4.931 -5.536
42 5.420 5.149 -4.998 5.323 -1.787 5.424 0.086
44 5.260 5.001 -4.920 4.906 -6.726 5.106 -2.912
49 4.660 4.824 3.527 4.837 3.804 4.720 1.300
53 5.160 5.087 -1.399 5.001 -3.069 4.858 -5.844
56 4.920 4.846 -1.500 4.838 -1.666 4.820 -2.028
57 5.480 5.259 -4.025 5.295 -3.361 5.355 -2.279
58 5.350 5.202 -2.749 5.210 -2.614 5.164 -3.471
59 4.770 4.829 1.249 4.763 -0.132 4.800 0.635
60 5.480 5.333 -2.682 5.371 -1.978 5.327 -2.788

N. F. a 10 6 4
R2 0.652 0.759 0.818
Q2 0.536 0.691 0.744

RMSEP 0.194 0.161 0.140
RSEP (%) 3.882 3.229 2.807

a Number of factors.

Molecular Design

The role of computation in molecular design has grown steadi-
ly since the late 1960s [32, 33]. In the early days emphasis was 
on statistical and computational approaches aimed at quantify-

ing the relationship of chemical structure to biological proper-
ties. In addition, recent modeling by computational approaches 
has become a critical tool in the drug discovery process. As 
an application of proposed method, we investigated WT-GA-
PLS model to predict the inhibitory activity of five new 
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1-phenyl[2H]-tetrahydro-triazine-3-one analogues whose bio-
logical tests were not performed with them yet. Table 4 shows 
the chemical structure of five new compounds and their inhib-
itory activity calculated by this proposed method.

Conclusions 

Using WT-GA-PLS, a QSAR model has been successfully de-
veloped for the prediction of inhibitory activity for 60 com-
pounds. The results well illustrate the power of descriptors in 
prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-tri-
azine-3-one analogues. The model could predict the inhibitory 
activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues 
derivatives not existed in the modeling procedure accurately. 
The work is the first application of WT-GA-PLS for QSAR 
study and shows that descriptors are capable to recognize the 
physicochemical information and be can useful to predict the 
inhibitory activity of the new compounds.
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Table 4. New structures of 1-phenyl[2H]-tetrahydro-triazine-3-one 
analogues and predicted log(1/IC50) by WT-GA-PLS.

Number 
of Design

Substitution log(1/IC50)
Calc.aX R3′ R5′ R2 R4 R5

1 N H Me H H Me 4.931
2 N Cl H H H F 5.450
3 CH Br Me H H H 5.778
4 CH H Cl H OH H 5.191
5 CH Br H H H Me 5.860

a Calculated by WT-GA-PLS model.


