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Abstract. Public compound databases annotated with biological activ-
ity are increasingly being used in drug discovery programs. A promi-
nent example is of such databases is PubChem. Herein, we introduce 
an approach to systematically characterize the structure-bioassay ac-
tivity relationships in PubChem using the concept of bioassay activity 
landscape. This strategy is general and can be applied to any data set 
screened across multiple bioassays. We also present a visual represen-
tation of the chemical space of an in-house data set using a recently 
developed web-based public tool.
Keywords: Chemical space, chemoinformatics, drug discovery, 
molecular databases, Structure multiple Activity Similarity (SmAS) 
maps.

Resumen. Programas de investigación de descubrimiento de fármacos 
utilizan con mayor frecuencia bases de datos moleculares públicas 
que contienen información de actividad biológica. Un ejemplo de 
estas bases de datos es PubChem. En este trabajo se presenta una 
estrategia para caracterizar en forma sistemática relaciones estructura-
actividad biológica en bioensayos disponibles en PubChem utilizando 
el concepto de panorama de actividad en bioensayos. Esta estrategia 
es general y puede aplicarse a cualquier grupo de compuestos que se 
han evaluado en bioensayos diversos. También se presenta una repre-
sentación visual del espacio químico de una colección de compuestos 
institucional utilizando una herramienta en línea disponible pública- 
mente.
Palabras clave: Bases de datos moleculares, descubrimiento de fár-
macos, espacio químico, mapas de Similitud Estructura-Actividad 
Múltiple, quimionformática.

Abbreviations: bAPS, Bioassay activity profile similarity; 
PCA, principal component analysis; SAR, structure-activity 
relationships; SmAS, Structure multiple Activity Similarity 
maps.

Introduction

High-throughput screening (HTS), combinatorial chemistry, 
parallel synthesis as well as the access to web-based bioinfor-
matic tools have given rise to a new area of data-rich environ-
ment for life-science studies dealing with biomolecular targets 
and molecular ligands [1]. As such, several compound libraries 
in the public domain are annotated with biological activities 
and these can be used for structure-activity relationships (SAR) 
studies for specific targets [2] and to study quantitatively the 
polypharmacology of bioactive compounds [3]. Notable ex-
amples of such libraries in the public domain are: PubChem 
[4], ChEMBL [5], and BindingDB [6]. These databases are 
particularly useful because, in addition to be openly accessible 
to academic groups, non-for profit and other research institu-
tions, they contain information of vast collections of chemical 
compounds that have been screened across multiple biological 
endpoints.

Mining the information included in annotated chemical 
databases is not an easy task and there is a continued effort to 
develop novel methods to retrieve the SAR for molecules tested 
against single or diverse biological endpoints. For example, 
PubChem has implemented several chemoinformatic tools to 
analyze the screening data for individual bioassays. However, 

a systematic analysis of the bioactivity profile of compounds 
screened across several bioassays is not straightforward. One 
of the major challenges in PubChem is that there are collections 
of compounds that were partially screened across a set of bio-
logical assays. Therefore, not all compounds in the collection 
have activity data across all the biological endpoints.

In order to characterize the bioactive profile of data sets in 
PubChem, herein we introduce a novel approach that systemati-
cally navigates through the structure-bioassay activity profile 
relationships of a set of compounds using the principles of 
‘activity landscape modeling’ (vide infra) [7, 8]. To illustrate 
this approach, we used in this work a data set of 618 compounds 
obtained from an in-house collection and deposited in Pub-
Chem. We also report a visual analysis of the chemical space 
[9] of this data set using a web-based tool.

Results and Discussion

Bioassay activity landscape modeling

The analysis of structure-activity relationships (SAR) of a set of 
compounds with measured biological activity is a central topic 
in drug discovery [10,11]. Although SAR studies of small-to-
medium size data sets can be performed with no need for com-
putational approaches, the systematic study of the SAR of large 
data sets requires the application of automated methods. Sys-
tematic descriptions of the SAR of compound data sets using 
the emerging concept of activity landscape have been designed 
to access, visualize, and to help understand the data generated 
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from general screening. In this context, activity landscape has 
been conceptualized as the multidimensional space resulting 
from the addition of biological activity as another dimension 
to the chemical space of a compound data set [7]. SmAS maps 
[12], dual and triple activity-difference (DAD/TAD) maps [13, 
14], a graph representation [15], and a novel approach using 
self-organizing maps [16], are examples of methods recently 
designed by our and other’s research groups to characterize the 
activity landscape of compound data sets screened across sev-
eral biological endpoints, i.e., multi-target activity landscapes. 
In this work, the SmAS maps the authors recently proposed [12] 
were adapted to systematically explore the relationship between 
the structure and bioactivity profiles of the 618 compounds 
i.e., the bioassay activity profile landscape. A major difference 
with the analysis of multi-target activity landscapes previously 
presented is that this work is not focused on a particular set 
of targets. Instead, this work is focused on the analysis of the 
activity profile of a set of compounds tested across different 
bioassays available in PubChem. We want to emphasize that 
each bioassay has its own quantitative definition of active/inac-
tive/inconclusive. This fact represents a challenge to perform 
traditional quantitative structure-activity relationships studies 
[17] and it is required to categorize the activity data to perform 
quantitative comparisons (see the Methods section).

The distribution of the pairwise bioassay activity profile 
similarities, calculated with Eq. 1 described in the Methods 
is summarized in Table 1. Overall, the compounds have low 
activity profile similarity as indicated by the low median (0.30) 
and mean (0.39) and other statistics of the bioassay activity 
profile similarities (Table 1). The low similarities are associated 
with the different activities of the compounds across the tested 
assays (e.g., active, inactive or inconclusive) and with the dif-
ferent set of assays the compounds were screened across. As 
pointed out before, not all 618 compounds were screened across 
the 244 confirmatory assays.

Figure 1A shows the SmAS-like map that depicts the re-
lationship between the bioassay activity profile similarity and 
MACCS keys/Tanimoto similarity for the 618 compounds (see 
the prototype plot in Figure 3). The plot contains 190,653 
data points that represent a pairwise comparison. Data points 
are further distinguished by the maximum number of ‘active’ 
bioassays of the molecules of the pair using a continuous scale 

from green (less active, zero assays) to purple (more active, 
27 assays) (vide infra). Figure 1B depicts in color 6,125 pairs 
where at least one compound in the pair showed activity in at 
least 12 bioassays i.e., ~10% (12/128) of the maximum activ-
ity (thresholds different from 12 can be used to filter the data 
points for visualization). All other pairs are displayed in light 
gray for reference. Here, we focused on the compounds that 
showed activity in several bioassays as an indicative of ‘bioac-
tive compounds’ (as opposed to compounds that were active in 
few or none assays). Of note, multiple activities across different 
bioassays may be a suggestion of promiscuity or polypharma-
cology [18] that can be associated with positive or negative 
effects [19].

Pairs of compounds with similar structure and similar bio-
activity profile are found in the top-right region of the SmAS-
like maps (roughly in region II of the prototype map in Fig-
ure 3). A representative example is the pair of compounds 
26670058_26669932 (identified in the SmAS map in Figure 
1A, B). Figure 1C shows a side-by-side comparison of the 
chemical structures. This figure clearly shows that this pair of 
molecules has very similar chemical structures (e.g., MACCS/
Tanimoto similarity of 0.938) and high bioassay activity pro-
file similarity (0.849). Compound 26670058 was active in 4 
(out of 105) bioassays and compound 26669932 was active 
in 13 (out of 112) bioassays. The high bioassay activity pro-
file similarity indicates that both compounds were tested in 
similar assays and that both showed similar activity profiles 
across those assays. Mining the bioassay information available 
in PubChem for these two compounds revealed that 26670058 
and 26669932 were screened in 105 common bioassays. Simi-
lar conclusions can be derived from the pair of compounds 
26670057_26669686 (Figure 1A, B) and other examples that 
can be found in region II of the plot.

The SmAS-like map readily identifies in the lower-right 
region of the plot bioassay activity profile cliffs i.e., pairs of 
compounds with high structure similarity but very different 
bioassay activity profiles (roughly in region IV of the proto-
type map in Figure 3). A representative example is the pair 
of compounds 85272523_26669932 with MACCS/Tanimoto 
similarity of 1.0 but low bioassay activity profile similarity of 
0.183 (Figure 1C). The only structural difference between these 
compounds is the stereochemistry. The low bioassay activity 

Table 1. Summary of the distribution of the 190,653 pairwise structure similarities of the 618 com-
pounds calculated with four molecular representations and distribution of the bioassay activity profile 
similarities.

Max Q3a Median Q1b Min Mean StdDev
MACCS 1.00 0.64 0.55 0.47 0.24 0.57 0.14

1.00 0.43 0.34 0.24 0.00 0.33 0.17
TGD 1.00 0.70 0.59 0.49 0.27 0.61 0.15
Atompairs 1.00 0.26 0.19 0.14 0.02 0.22 0.11
Radial 0.84 0.09 0.06 0.05 0.01 0.08 0.05
bAPSc 1.00 0.62 0.30 0.17 0.00 0.39 0.29

aThird quartile. bFirst quartile. cBioassay activity profile similarity (calculated with Eq. 1).
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profile similarity indicates that both compounds were tested 
in different assays and/or that both showed a different activity 
profile across those assays. For example, compound 26669932 
(S) was active in 13 (out of 112) assays; in contrast 85272523 
(R) showed activity in 6 (out of 33) assays. Searching the list 
of assays available in PubChem for each compound showed 
that 26669932 and 85272523 were tested only in 25 common 
bioassays. This result strongly suggests that both compounds 
are very promising and should be tested across the same set of 
assays. Similar conclusions can be obtained from the molecule 
pair 46500073_26669686 in Figure 1. Additional examples of 
bioassay activity profile cliffs can be found in region IV of 
the plot.

The examples of pairs of molecules discussed above are 
located in the same relative regions II and IV of the prototype 

plot (Figure 3) generated with GpiDAPH3, atom pairs, and 
radial fingerprints (data not shown). Therefore, these pairs can 
be considered as consensus data points [8] in the bioassay 
landscape.

In this data set we did not identify remarkable examples of 
data points representative of scaffold hopping (region I of the 
prototype map), i.e., compounds with very high activity pro-
file similarity (e.g., bAPS > 0.8) and low structure similarity. 
Although there are several data points in this area (Figure 1A), 
Figure 1B clearly shows that there are no pairs of compounds 
in which at least one molecule in the pair showed activity in a 
number of assays.

The authors have reported different ways to further quan-
tify the contents of the SmAS and related maps [20-22]. Such 
quantification is beyond the scope of this work that is focused 

Fig. 1. Modeling of the bioassay activity landscape of the 618 compounds analyzed in this work. (A) 
The SmAS-like plot shows in color 190,653 pairwise comparisons. Data points are color-coded by the 
maximum number of confirmatory assays of the most bioactive compound in the pair using a conti-
nuous scale from purple (more active) to green (less active); (B) In color, 6,125 points with at least 
one compound in the pair showed activity in at least 12 bioassays (the remaining pairs of compounds 
are displayed in light gray); (C) Selected pairs of compounds from region II and IV (see prototype 
plot in Figure 3). Compounds are labeled with the corresponding SID number in PubChem.

C
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on the introduction of a novel approach to conduct bioassay 
activity landscape modeling in compound databases.

Chemical space

Several visualization methods have been used to represent 
chemical spaces [9]. In-house collections have been analyzed 
by the authors and other groups using several methods includ-
ing PCA [23, 24], multi-fusion similarity plots [25] and Latent 
Trait Model [26]. Herein, we employed ChemGPS-NPWeb, a 

web-based public tool based on global mapping onto a con-
sistent, eight dimensional map over structure derived physico-
chemical characteristics for a reference set of compounds (see 
also Methods section) [27]. Figure 2 shows a visual representa-
tion of the chemical space of the 729 compounds obtained from 
in-house collections available in PubChem (vide supra). Fig-
ure 2 clearly shows that compounds from in-house collections 
share the same chemical space of approved drugs and can be 
regarded as drug-like in terms of physicochemical properties. 
Visual representations of the chemical space using fingerprint-
based representations for in-house collections in PubChem are 
published elsewhere [8].

Conclusions and perspective

The large amount of bioactivity data available in public re-
positories such as PubChem represents a major opportunity 
to further advance drug discovery endeavors. We present a 
general method to systematically describe structure-bioactiv-
ity profile relationships using the concept bioassay activity 
landscape modeling. The analysis was based on the pairwise 
comparison of bioactivity profile similarity and molecular simi-
larity using molecular fingerprint representations. Dislike cur-
rent approaches to model multi-target activity landscapes which 
are focused on a particular set of related targets, the focus of 
this work is to model bioactivity profiles that may be obtained 
after screening a compound data set across different and/or 
unrelated biological targets. To illustrate the method, we used 
a collection of more than 600 compounds obtained from in-
house libraries that have been screened across more than 200 
bioassays in PubChem. This collection shares the same chemi-
cal space of approved drugs as demonstrated by an analysis of 
the chemical space herein presented. The approach to bioassay 
activity landscape modeling is general and can be applied to 
any other set of compounds available in PubChem screened 
across multiple bioassays or to any other chemical databases 
with annotated biological activity. A major perspective of this 
work is to apply this approach to model the bioassay activity 
landscape of other data sets.

Methods

Data sets and activity data

An initial set of 729 compounds derived from in-house collec-
tions were obtained from PubChem using the query “Torrey 
Pines” (accessed June 2011). All tested bioassays available 
were retrieved for each compound from PubChem. A final set 
of 618 compounds tested in any confirmatory assay (244 in to-
tal) was selected for the bioassay activity landscape modeling. 
The total number of confirmatory bioassays each compound 
was tested across, along with the number of ‘active’, ‘inactive’ 
or ‘inconclusive’ bioassays, were recorded. It is worth noting 
that not all compounds where tested in all the bioassays: 75% 

Fig. 2. Visual representation of the chemical space of a set of appro-
ved drugs (red) and compounds obtained from in-house collections 
and deposited in PubChem (yellow). The plot was generated using 
the ChemGPS-NP prediction scores calculated using the on-line tool 
ChemGPS-NPWeb.

Fig. 3. Prototype SmAS map adapted to model bioassay activity 
landscapes. The bioassay activity profile similarity is plotted against 
molecular similarity. The plot can be roughly divided in four major 
regions. Region IV contains bioassays activity profile cliffs. See text 
for details.
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of the compounds were tested in 101 or fewer bioassays and 
50% of the compounds were screened in 37 or fewer bioassays. 
The total maximum number of confirmatory assays that a single 
compound was tested in was 128 and the minimum was six.

Bioassay landscape modeling

We investigated the relationship between bioassay activity 
profile and structure similarity using the principles of multi-
target activity landscape modeling i.e., computational methods 
to explore the structure-activity relationships (SAR) of data sets 
with biological activity across different biological endpoints 
[12-15, 21, 28-30]. Herein, for each pair of compounds, the 
computed molecular similarity was compared with the bioas-
say activity profile similarity across multiple assays. Pairwise 
structure-bioassay activity profile relationships were visually 
depicted in 2D plots that are reminiscent of the Structure mul-
tiple Activity Similarity (SmAS) maps we recently reported 
(vide infra) [12].

Bioassay activity profile similarity

In PubChem each bioassay has its own quantitative defini-
tion of active/inactive/inconclusive. This is because, at least in 
part, the bioassays have a different nature and the assays can 
be performed by different screening centers. Since the main 
goal of this work is to obtain a general characterization of the 
bioactivity profile, herein we used a categorical classification 
of the activity data. For each of the 618 compounds tested in 
any of the 244 confirmatory assays, the bioassay activity pro-
file was represented as a multiset fingerprint encoding of the 
activity data available in PubChem as follows: ‘active’ was 
set to ‘2’; ‘inactive’ as ‘1’; inconclusive or not tested as ‘0’. 
Then, the pairwise bioassay activity profile similarity (bAPS) 
across the 244 bioassays was calculated using the Tanimoto 
coefficient [31]:

 bAPS( , )

min[ ( ), ( )]
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where bAPS(i,j) is the bioassay activity profile similarity of the 
ith and jth molecules, mk(i) and mk(j) are the activity encodings 
of the ith and jth molecules, respectively, and n is the total 
number of assays that the molecules were screened across.

Structure similarity

MACCS keys (166 bits) were computed with Molecular Op-
erating Environment (MOE) [32]. In order to address the 
well-known dependence of chemical space on structure rep-
resentation [8] other four 2D fingerprints were also explored; 
two fingerprints implemented in MOE: pharmacophore graph 
triangle (i.e., graph-based three point pharmacophores) Gpi-

DAPH3 and typed graph distances (TGD); and two fingerprints 
implemented in Canvas [33], namely atom pairs and radial 
fingerprints (equivalent to the extended connectivity finger-
prints, ECFPs [34]). Structure similarities were computed with 
the Tanimoto coefficient, which has been successfully used to 
model the activity landscape of several data sets [13, 14, 20-22]. 
A summary of the distribution of the 190,653 pairwise structure 
similarities calculated with the five molecular representations 
is displayed in Table 1. Overall, the data set is structurally 
diverse as indicated by the low MACCS/Tanimoto similarity 
(e.g., median of 0.55; mean of 0.57) and the distribution of the 
other fingerprints.

Structure multiple Activity Similarity (SmAS) maps

For each pair of compounds, their bioassay activity similar-
ity was plotted against their structural similarity generating 
SmAS-like maps. These maps, which are an extension of the 
SAS maps initially proposed for single targets [35], were re-
cently developed in our group and represent a general approach 
to systematically explore the activity landscapes of data sets 
tested across multiple biological endpoints [12]. A prototype 
SmAS map adapted to model bioassay activity landscapes is de-
picted in Figure 3. The molecular and bioassay activity profile 
similarities are represented on the X- and Y-axes, respectively. 
Four major regions can be roughly distinguished in the plot. In 
this study, pairs of compounds that fall in region I have low 
structural similarity, but the bioassay activity profile is very 
similar (although the tested bioassays are not necessarily the 
same). Region II denotes pairs of compounds with both high 
structure similarity and high bioassay activity profile similarity. 
Compounds in region IV have high structure similarity, but low 
bioassay activity profile similarity and therefore correspond to 
bioassay activity profile cliffs (vide supra). Region III is the 
least interesting, containing pairs of molecules with low mo-
lecular similarity and low bioassay activity profile similarity.

Chemical space

Several visualization methods of the chemical space are avail-
able [9, 36]. In this work, we employed the recently developed 
web-based public tool ChemGPS-NPWeb [27, 37]. ChemGPS-
NP [37, 38] is a principal component analysis (PCA) based 
global chemical positioning system [39] tuned for exploration 
of biologically relevant chemical space. The first four dimen-
sions of the ChemGPS-NP map capture 77% of data variance. 
The first dimension (principal component one, PC1) represents 
size, shape and polarizability (main contribution is size); PC2 
is associated with aromatic and conjugation related properties 
(main influence is aromaticity); PC3 describes lipophilicity, 
polarity, and H-bond capacity (major contribution is lipophi-
licity); and PC4 expresses flexibility and rigidity. Chemical 
compounds can be positioned onto this map using interpolation 
in terms of PCA score prediction. Further details of this method 
are provided elsewhere [27].
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