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Abstract. The recently developed approach to auxiliary density per-
turbation theory (J. Chem. Phys. 2008, 128, 134105) for the purpose of 
calculating molecular properties is here extended to include open-shell 
systems. Both unrestricted and restricted formalisms are considered. 
A linear equation system, twice as large as the auxiliary function set 
is obtained in both cases. For the first time, the formulation for aux-
iliary density perturbation theory for restricted open-shell formalism 
is derived.
Key words: Auxiliary Density, Perturbation, Theory, Open-shell.

Resumen. La teoría de perturbaciones de densidad auxiliar recien-
temente desarrollada (J. Chem. Phys. 2008, 128, 134105) para el 
cálculo de propiedades moleculares es extendida en este trabajo para 
el caso de sistemas decapa-abierta. Se consideran formalismos tanto 
restringidos como sin restricciones. En ambos casos se obtiene un 
sistema de ecuaciones lineales dos veces más grande que el conjunto 
de la función auxiliar. Por primera vez, se deriva la formulación de la 
teoría de perturbaciones de densidad auxiliar dentro del formalismo 
de capa-abierta restringido.
Palabras clave: Densidad auxiliar, perturbación, teoría, capa-abierta.

Introduction

The Kohn-Sham (KS) approximation [1] to density functional 
theory (DFT) [2, 3] is a very successful theoretical approach. 
Thousands of applications have been described for this meth-
odology. Even though there are well known issues to be ad-
dressed concerning the essentials of the exchange-correlation 
functionals used [4-9], we believe that KS-DFT will enjoy 
popularity for a number of years more and thousands of new 
applications will be discovered. Therefore, rather than either 
applying or benchmarking DFT results or discussing its range 
of applications; the purpose of this paper is to provide an extra 
tool for calculating the molecular properties of the KS-DFT 
framework.

Very efficient implementations of KS-DFT can be achieved 
using the variational approximation of the Coulomb potential 
(VACP) [10-13]. As an example one can cite the Lowdin [14] 
and deMon2k programs [15]. Another approximation, closely 
related to the VACP, where auxiliary density is obtained by ap-
plying VACP is used for the direct calculation of the exchange-
correlation energy and potential [16-19]. A well-defined energy 
expression and the corresponding gradients and higher order 
derivatives can be obtained from the resulting auxiliary density 
functional theory (ADFT). The accuracy of ADFT falls within 
the intrinsic accuracy of current KS-DFT implementations [18]. 
The computational efficiency of energy and structure optimiza-
tion calculations when applying ADFT arises from the fact that 
the approximated density is a linear combination of auxiliary 
functions, and therefore the density calculation at each grid 
point is on a linear scale.

Analytic calculation of molecular properties, applying 
electronic structure methods is based on static linear response. 

The formulation of the so-called coupled perturbed Kohn-
Sham equations [20-23] has been adapted from the analogous 
coupled-perturbed Hartree-Fock equations [24-27]. Another, 
density-based method eliciting linear response was thoroughly 
developed by McWeeny [28-33]. McWeeny’s method is more 
amenable to DFT because it is more oriented towards density. 
In recent publications, a member of our group, together with 
Prof. Köster presented an explicit formulation for the evalua-
tion of linear response dependent properties in ADFT. Deri-
vation begins with McWeeny’s formulation and includes the 
effects of ADFT approximations and auxiliary density. The 
resulting ADPT [34, 35] is very promising.

Due to the application of auxiliary density, self-consis-
tency iterations are not required for ADPT. The efficiency of 
this method and its reliability has been tested for the calcula-
tion of polarizabilities [34, 35], Fukui functions [36, 37] and 
vibronic coupling [38]. Likewise, it was extended to manage 
time-dependent linear response [39]. Despite its success, ADPT 
formulation has not been completely documented. Working 
formulae for ADPT applied to closed-shell (ADPT-RKS) sys-
tems were described in Refs. [34-36, 39-41]. Extending this to 
cover the Pople-Nesbet [42, 43] unrestricted open-shell formu-
lation (ADPT-UKS) was straightforward and the process was 
described in Ref. [35], although this is less accessible to the 
global scientific community. The least documented case occurs 
with reference to the restricted open-shell formulation (ADPT-
ROKS), as this has never previously been documented.

In Ref. [35] it was reported that ADPT could not be com-
bined with Roothaan’s restricted open-shell method [44]. In this 
work, we finally indicate a method for implementing ADPT-
ROKS, which is very important for applications to organic 
radicals, transition metal compounds and clusters. Furthermore, 
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problems related to spin contamination may result in unreliable 
property calculations when applying ADPT-UKS. Although 
projection techniques [45, 46] could be used to cure spin con-
tamination in SCF calculations, an adequate treatment of spin 
explicitly includes perturbations and therefore, the calculation 
of related properties requires a perturbation theory based on 
the restricted open-shell method [47-49]. Here we document 
ADPT-ROKS with the exclusive purpose of sharing it with 
those willing to take advantage of ADPT performance, in ap-
plications to restricted open-shell systems.

The manuscript is organized as follows. In Section 2, 
ADPT-ROKS formulation is outlined. Section 3 describes the 
extension to unrestricted open-shell systems for two purposes: 
firstly, to make its formulation widely available to the scientific 
community and secondly, to serve as a precedent for the deriva-
tion of ADPT-ROKS, which is described in detail in Section 4. 
Final remarks are presented in Section 5.

Results and Discussion

ADPT-RKS

For the sake of being comprehensive, the closed-shell case is 
also outlined here. Likewise, this serves as a starting point for 
introducing open-shell cases. A detailed description of ADFT 
can be found in Ref. [18]. Perturbation independent basis, 
auxiliary functions and local functionals are assumed for the 
sake of simplifying this presentation. However, even if these 
constraints were removed, we would still arrive at the same 
conclusions.

In the linear combination of Gaussian-type orbitals (LC-
GTO) LCGTO ansatz the Kohn-Sham orbitals, yi(r) are ex-
panded to become atomic orbitals, m(r):

 i ic( ) ( )r r  (1)

Because in a Kohn-Sham scheme the density, r(r) of a 
closed-shell system is presented as

 ( ) | ( )|r r2 2

1
i

i

occ

 (2)

Note the prefactor of 2, due to the double occupation of 
orbitals. Substitution of Eq. (1) into Eq. (2) yields:

 ( ) ( ) ( )
,

r r rP  (3)

where the closed-shell density matrix is defined as follows:

 P c ci
i

occ

i2
1

*  (4)

The auxiliary density used for the VACP, r~(r), is built as 
a linear combination of the auxiliary functions k(r),

 ~ ( ) ( )r rx kk
k

 (5)

The fitting coefficients xk are obtained by minimizing the 
density self-interaction error [10], resulting in the following 
linear equation system:

 Gx = J(P) (6)

where the fitting coefficients are collected in the vector x, here 
we have introduced the Coulomb matrix G and the Coulomb 
vector J, whose elements are defined by [50]:

 Gkl = 〈k || l 〉 (7)

 J P kk ( ) ||
,
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and
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In this equation the symbol || stands for the coulomb opera-
tor 1/|r - r′| [18], therefore it is very important for readers to 
note that integral notations used here refer neither to those pre-
sented by Dirac, nor to those presented by Mulliken [51]. Note 
also that VACP is not exclusive to DFT calculations. Whenever 
a density is expressed as a bilinear form of the basis functions, 
an approximated density (expressed as a linear expansion of 
auxiliary functions) can be used to perform a VACP. This will 
be especially useful in the following sections.

The ADFT energy expression is [18]:

 E P H P k x

x x k l E

k
k

k l xc
k l

, ,

,

||

|| [ ~ ]1
2

 
(11)

Hmv represents an element in the mono-electronic matrix. 
It includes kinetic energy, nuclear attraction integrals and any 
other external potential [18]. The Kohn-Sham matrix elements 
are obtained by differentiation of Eq. (11) with respect to the 
density matrix elements:

 K E
P

H k x zk k
k

|| ( ) (12)

with the exchange-correlation fitting coefficients being defined 
as

 z G l
E

dk kl
l

xc1 ( )
[ ~ ]
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r

r
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For the derivation of ADPT-RKS equations, we begin with 
the definition of the (first order) closed-shell perturbed density 
matrix as indicated in McWeeny’s approach [32]:
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Here l denotes the perturbation parameter, e.g. an electric 
field component in the calculation of polarizabilities, ei and ea 
refer to orbital energies of the ith occupied and ath unoccupied 
orbital. ia

( ) represents the perturbed Kohn-Sham matrix in the 
reference molecular orbital representation,

 ia i aK c c( ) ( )

,

 (15)

The derivative of the fitting equation system Eq. (6) with 
respect to the perturbation parameter l, assuming perturbation 
independent basis and auxiliary functions, yields:

 G x P kkl l
k

( ) ( )

,

||  (16)

Substitution of Eq. (14) into Eq. (16) yields:

 G x
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kl l
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The perturbed Kohn-Sham matrix can be obtained in a 
straightforward way from the previously derived ADFT Kohn-
Sham matrix Eq. (12):

 K H k M xkl l
k l

( ) ( ) ( )

,

||K H k M xkl l
k l
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with

 M ≡ 1 + G-1f (19)

where f represents the exchange-correlation kernel in the aux-
iliary basis set representation, whose elements are

 f
E
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Substitution into Eq. (17) permits us to arrive an equation 
free of both P(l) and K(l),
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In order to simplify our notation, we now introduce the 
perturbation independent Coulomb coupling matrix A [34],

 A
k ai ia l

kl
i aa

uno

i

occ || ||
 (22)

and the perturbation vector b(l),

 b
k ia

k
ia

i aa

uno

i

occ
( )

( )||
 (23)

With these quantities and the Coulomb matrix defined in 
Eq. (22), equation (21) can be re-written as [34, 35]:

 1
4
G AM x b( ) ( )  (24)

The perturbed fitting coefficients can then be obtained 
from this equation system. Since G, A and M are perturbation 
independent, only the perturbation vector b(l) must be rebuilt 
for each different perturbation, e.g. the different electric field 
components in the case of a polarizability calculation. Eq. (24) 
was first derived in Refs. [34, 35]. Its dynamic counterpart has 
also been documented [35, 39]. Technical details and pertur-
bation specific adjustments can be found in Refs. [34, 36, 38, 
39].

ADPT-UKS

In the spin polarized ADFT the total density is given by the 
sum of the spin-densities. This fact can be expressed in terms 
of density matrices as follows:

 P = Pa + Pb (25)

Two independent Coulomb fitting procedures are per-
formed for each spin-density. A total auxiliary density can be 
also constructed,

 x = xa + xb (26)

and each auxiliary spin-density is obtained from equations with 
the form

 Gxs = J(Ps ) (27)

where s stands for spin a or b. Likewise, for the Kohn-Sham 
matrices

 K H k x zk k
k l
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,

 (28)

with
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r
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Applying McWeeny’s theory, we get the response for each 
spin density matrix independently

 P c c c cia

i aa
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i

occ

i a a i
,( )

( )

( ) (30)

These relationships are obtained independently for each 
spin, due to the fact that each spin density is obtained from a 
separate Kohn-Sham matrix diagonalization. However, note 
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that the factor of 2 before the Kohn-Sham matrix response has 
been removed, as there is only one electron with spin s for any 
given occupied orbital. Since the fitting is also independent for 
each spin, we also get two equation responses of the following 
type:

 Gxs,(l) = J(Ps,(l)) (31)

And, therefore, two relationships between the responses of 
the auxiliary density fitting coefficients and the corresponding 
Kohn-Sham matrix,

 G x
ia k

kl l
l

ia

i aa

uno

i

occ
,( )

( ) ||2
 (32)

The coupling between alpha and beta sub-systems arises 
from the Coulomb and exchange-correlation contributions of 
the Kohn-Sham matrix response,

 K H k M xkl l
k l

,( ) ( ) ,( )

,

| |  (33)

with

 Mss′ = 1 + G-1fss′ (34)

The exchange-correlation kernel is now spin-resolved,

 f
E
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Since  f lk
ss′ =  f k

s′s, there are 3 kernel matrices. Only  f kl
ab 

couples the a and b subsystems. The final equation system for 
ADPT-UKS is thus
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with the two Coulomb coupling matrices presented as

 A
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 (37)

and the perturbation vector blocks

 b
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For a closed-shell system r~a = r~b and Eq. (36) reduces 
to Eq. (24). The following identification can be made for the 
closed-shell exchange-correlation kernel

 f f f1
2
( ) (39)

This relation is relevant for the implementation of ADPT in 
ADFT codes, where the programming of exchange-correlation 
functionals is spin-resolved.

ADPT-ROKS

In a restricted open-shell Kohn-Sham formalism, a single ef-
fective Kohn-Sham matrix is diagonalized [33, 44, 52, 53]. 
The result of this diagonalization is a set of molecular orbitals 
which are doubly occupied and they are part of the closed-shell 
scheme. A second set, the open-shell, contains only single oc-
cupied orbitals. The third and last set includes all unoccupied 
(virtual) orbitals. The blocks of the effective Kohn-Sham ma-
trix are built following this recipe [47, 54-56]:

 K

K K K

K K K

K K K

c c

c

c c

 (40)

where Ka and Kb are the spin-resolved Kohn-Sham matrices 
built according to Eq. (28) and

 K K Kc 1
2
( ) (41)

The blocks of the effective Kohn-Sham matrix corre-
spond to combinations of the three different molecular orbital 
blocks.

Consistent with McWeeny’s theory, response to the Kohn-
Sham matrix is required only for elements of the off-diagonal 
blocks. These are obtained as follows:

• Closed-open (i ∈ closed, n ∈ open):

 in in k k
k

in k x z( ) ( ) ( ) ,( )|| [ ] (42)

• Closed-virtual (i ∈ closed, a ∈ virtual):

ia ia k k k
k

in k z z( ) ( ) ( ) ,( ) ,( )|| ( )1
2

x  (43)

• Open-virtual (n ∈ open, a ∈ virtual):

 na na k k
k

na k x z( ) ( ) ( ) ,( )|| [ ] (44)

Note that, the difference concerning the evaluation of the 
different types of KS matrix elements appear only on the ex-
change-correlation fitting coefficients. Substitution of Eq. (40) 
into Eq. (32) yields:
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This time, the block coupling matrices are defined us-
ing super-scripts to identify the summation domains. They are 
presented as

 A
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 (47)
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As there are 3 off-diagonal blocks in the Kohn-Sham ma-
trix response, three Coulomb coupling matrices emerged here. 
Differentiation of the exchange-correlation fitting coefficients 
leads us to the final ADPT-ROKS linear equation system
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In matrix notation
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Note that, in contrast to the UKS case, Eq. (52) is not sym-
metric with respect to spin. This originated from the coupling 
of the open-shell with the other two shells.

As the evaluation of A is the most demanding computa-
tional task in ADPT, the following relations are very useful for 
saving time and programming:

 Aa = Acv + Aov (53)

 Ab = Acv + Aco (54)

Since ROKS requires three different blocks, at least one 
of these should be explicitly calculated. The other two can be 
built using this one and the UKS blocks.

Conclusions

In this paper auxiliary density perturbation theory has been ex-
tended to include open-shell systems. For the first time ADPT 
equations for ROKS are presented. The derivation was pre-
sented showing a clear connection between ADPT-RKS and 
ADPT-UKS. A much more intimate relationship was discerned 
between ADPT-UKS and ADPT-ROKS.

The characteristic feature of ADPT which makes possible 
a direct, non-iterative, solution was also found in the case of 
ADPT-UKS and ADPT-ROKS. However, for open-shell cal-
culations, a system of equations twice the size of the auxiliary 
function set has to be solved.

This article contains all the documentation required for 
implementing ADPT for closed-shell, unrestricted open-shell 
and restricted open-shell cases. The only pre-requisite is the 
ADFT documentation [18].

The only limitation previously identified for ADPT, name-
ly the application on restricted open-shell has been eliminated 
by following the approach described here. We are optimistic 
that this development will extend the range of applicability and 
impact of ADPT for the calculation of molecular properties.
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