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Abstract. A new method for pressure control in first-principle molecu-
lar dynamics simulations for finite systems is presented. The extended 
Lagrangian methodology is applied to generate the equations of mo-
tion and the system’s volume is obtained by a purely geometrical 
procedure, which is inexpensive in terms of computational cost. The 
implementation of all discussed algorithms was carried out in the 
program deMon2k where a robust machinery for auxiliary density 
functional theory calculations exists. The here described methodology 
extend our effort on property calculations beyond the polyatomic ideal 
gas approximation on the basis of first-principle electronic structure 
calculations.
Key words: Molecular Dynamics, Finite Systems, Barostats.

Resumen. Se presenta un nuevo método para controlar la presión en 
simulaciones de dinámica molecular de primeros principios. La meto-
dología del Lagrangiano extendido es aplicada para la generación de 
las ecuaciones de movimiento y el volumen del sistema se obtiene de 
un procedimiento puramente geométrico, el cual es económico en tér-
minos de costo computacional. La implementación de los algoritmos 
discutidos se llevó a cabo en el programa deMon2k, donde existe una 
maquinaria robusta para cálculos de teoría de funcionales de la densi-
dad auxiliar. La metodología aquí descrita amplía nuestro esfuerzo en 
cálculos de propiedades más allá de la aproximación del gas ideal con 
base en cálculos de estructura electrónica de primeros principios.
Palabras clave: Dinámica molecular, sistemas finitos, barostatos.

Introduction

Molecular Dynamics (MD) simulations are used to study the 
natural time evolution of a system of N particles in a volume V. 
In such simulations the total energy E is a constant of motion. 
The integration of the (classical) equations of motion for such 
a system leads, in the limit of infinite sampling, to a trajectory 
which maps onto a microcanonical (NVE) ensemble of micro-
states. Application of pressure to a given system may lead to 
electronic structure changes which will also modify the proper-
ties of the system. Many experimental measurements are made 
under constant temperature and pressure conditions, and thus, 
simulations in the isothermal-isobaric (NPT) ensemble can be 
most directly related to experimental data.

Although thermodynamic results can be transformed be-
tween ensembles, this is only reliable in the limit of infinite 
system size (the thermodynamic limit). In the case of molecules 
it may, therefore, be desirable to perform simulations in a spe-
cific ensemble. NPT simulations of bulk materials have been 
performed since the eighties, mainly due to the development of 
extended Lagrangians [1-6]. There, the volume of the system 
is well defined and identical to that of the simulation cell. The 
volume and the external pressure, as its conjugate variable, are 
included in the Lagrangian as a PV term. An artificial kinetic 
energy corresponding to the cell fluctuations is also introduced 
and the cell is treated as a dynamical variable, allowing the 
molecular dynamics trajectory to sample the NPT ensemble. 
These techniques have been applied to different systems and 
excellent agreements between experiment and theoretical simu-
lations were found [7-9]. On the other hand, pressure control 

for finite systems is much less explored. Recent experiments of 
finite systems under pressure, such as clusters, nano-crystals, 
proteins and biological systems [10-28], have stimulated the 
interest in finite system barostats.

There are two main approaches to control the pressure in 
MD simulations of finite systems. The first one is based on the 
thermodynamic description of pressure as the result of (linear) 
momentum exchange between a particle and its environment. 
Here the environment can consist of different types of other 
particles or a container. In this treatment, a molecule is im-
mersed into a classical repulsive fluid, with classical interac-
tions between the molecule and the fluid. The parameters are 
chosen such that there is a clear volume partition between the 
two systems, and no fluid particle is allowed to be inside the 
simulated molecule. The whole system, liquid and molecule, is 
simulated at constant volume conditions. The fluid behaves as a 
pressure reservoir, equilibrating its pressure with the molecule’s 
internal pressure. This approach is closed to experiment, where 
a finite system is in contact with a gas or a fluid. The pres-
sure then depends on the fluid density and temperature. From 
a practical point of view, a certain drawback of the reservoir 
method is the necessity to use a relatively large number of fluid 
particles in order to avoid crystallization [29-30]. The second 
approach is based on the extended Lagrangian formalism where 
the pressure is taken into account by including a PV term in the 
description of the system. The Lagrangian for a system under 
external pressure Pext then reads:
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Where the terms on the right side represent the kinetic 
energy, potential energy and mechanical work on the system, 
respectively.

In this approach there is no need for an auxiliary liquid to 
exert pressure on the molecule. However, due to the lack of 
periodic boundary conditions, the volume of the system (V ) is 
not imposed by the simulation cell but has to be calculated as 
a function of the atomic coordinates (R).

For this reason, considerable emphasis has been placed 
upon accurate calculations of the volume of molecules within 
the last years. Sun et al. [31] defines the total volume of the 
system as a sum of individual atomic volumes. Landau [32] 
estimates the volume based on the average inter-particle dis-
tance. Cococcioni et al. [33] have introduced a definition based 
on the quantum volume enclosed by a charge isosurface, and 
Calvo and Doye [34] have proposed a volume definition by 
finding the minimal polyhedron enclosing the finite system. 
Other definitions are based on an isotropic approximation to the 
finite system volume, e.g. by replacing the system by a sphere 
of a given radius, which is calculated from a combination of 
atomic coordinates [35]. Our work contributes to the second 
approach, i.e. the extended Lagrangian formalism. After a brief 
introduction of Born-Oppenheimer molecular dynamics em-
ploying auxiliary density functional theory (ADFT) [36] in the 
next section we introduce a simple, yet exact, volume definition 
for finite systems in Section 3. The computational details are 
given in Section 4. The results of our validation calculations 
are discussed in Section 5. Concluding remarks are drawn in 
the last section.

Born-Oppenheimer Molecular Dynamics 
with ADFT

In a full description of the energetics and dynamics of a sys-
tem, all particles, which in our case are electrons and nuclei, 
should be treated quantum mechanically. However, for chemi-
cal studies, physical and practical considerations motivate cal-
culations within the Born-Oppenheimer (BO) approximation 
[37]. This approximation introduces a separation of the time 
scales for the nuclear and electronic motions. It is at this level 
of approximation that the fundamental chemical concept of a 
molecular structure appears in the description of matter. To 
further simplify the equations of motion for the elementary 
particles we apply in our implementation the classical equa-
tions of motion for the propagation of the nuclei. Therefore, a 
BOMD step as discussed in this article consists of solving the 
static electronic structure problem, i.e. to solve the stationary 
Kohn-Sham equations [38], and the propagation of the nuclei 
via classical molecular dynamics. The resulting BOMD method 
is defined by:

 ^HKSyi(r) = eiyi(r) (2)

 MAÄ = -∇AEpot (3)

Where ^HKS, yi(r) and ei are the Kohn-Sham Hamiltonian, 
orbitals and their eigenvalues respectively, MA stands for the 
mass of the atom A, Ä denotes its acceleration and Epot is the 
potential energy function of the system. In the above described 
BOMD step, the solution of the Kohn-Sham equations (2) rep-
resents the computational bottleneck. In the framework of a 
localized basis set approach this task requires the calculation 
of 4-center electron repulsion integrals (ERIs). This calcula-
tion scales formally with the 4th power of the size of the basis 
set, therefore, the size of treatable systems is severely limited 
by this step. The use of the variational fitting of the Coulomb 
potential approximation from Dunlap [39], reduces the scal-
ing of the ERI calculation by one order because only 3-center 
integrals have to be calculated. For this purpose a second func-
tion set is introduced, the so called auxiliary function set. In 
the program deMon2k [40] the density calculated from this 
auxiliary function set is also used for the calculation of the ex-
change-correlation potential. This approach is named auxiliary 
density functional theory (ADFT) in the literature [36]. Here 
the molecular orbitals of a system are represented by a linear 
combination of Gaussian type orbitals and the auxiliary func-
tions are represented by primitive Hermite Gaussian functions 
which share the same exponents within a set. Whereas the 
Kohn-Sham density scales quadratically with the number of ba-
sis functions, the auxiliary density scales only linearly with the 
number of auxiliary functions. This represents a considerable 
reduction in the grid work. Equations of motion (3) can be inte-
grated with the velocity Verlet algorithm [41, 42], which yields 
a good compromise between accuracy and computational cost 
[43]. This performance opens then the possibility of computing 
molecular properties as a function of time with first-principle 
methods up to the nanosecond time scale [44].

Volume Definition for Finite Systems

In localized atomic orbital electronic structure methods a natu-
ral volume definition is obtained by the radial cutoffs of basis 
functions used in the analytical and numerical molecular inte-
gral calculations. Based on these cutoffs a spherical volume can 
be assigned to each atom. The radii of these atomic spheres are 
defined by the most diffuse basis functions at the atoms. Thus, 
the atomic volumes depend from the basis set of the atom and 
the basis function cutoff value, tV. Once the atomic volumes are 
calculated the molecular volume is obtained by the superposi-
tion of the atomic spheres. Inspired by the GEPOL program 
[45] we implemented a geometrical procedure for the molecular 
volume calculation. The algorithm can be summarized by the 
following steps:

1.  Each atom, centered in A, is surrounded by a sphere 
with radius RA calculated according to the (radial) basis 
function cutoff value, tV .

2.  Each sphere is then divided into 60 spherical triangles 
of equal area. This is equivalent to the projection of a 
pentakisdodecahedron (Figure 1, left) on each sphere.
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1.  Now the tessellation is increased. Each initial triangular 
tesserae is divided into four triangles (Figure 1, right). 
Let x1 and x2 be the coordinates of two vertexes of the 
initial triangle. Then xc is the coordinate corresponding 
to the midpoint along the chord (straight line passing 
by x1 and x2) calculated as:

 x
x x

c
1 2

2
 (4)

1.  This calculation is repeated for all sides of the 60 tri-
angles. Please note that new xc coordinates are not lying 
on the surface of the sphere (see Figure 2, left).

3.  Calculation of the coordinates xm of the vertexes of the 
new triangles on the sphere as depicted in Figure 2. 
These coordinates correspond to the midpoint along the 
arc on the sphere surface and are given by:

 x x
R
Rm c
A

c
 (5)

1.  Here Rc is the distance from the origin of the sphere to 
xc. By repeating this calculation for all xc one obtains a 
set of 240 spherical triangles per sphere.

4.  Steps 3 and 4 are repeated until the division process has 
yielded 3840 spherical triangles per sphere (atom).

5.  Calculation of the center coordinates {xn} for each 
spherical triangle. This procedure requires the calcula-
tion of the triangle’s barycenter xb (see Figure 3, left), 
given by:

 x
x x x

b
i j k

3
 (6)

1.  where xi, xj and xk stands for the vertexes after complete 
tessellation. The coordinates of the triangle center on 
the spherical surface (see Figure 3, right) are then the 
components of the vector:

 x x
R
Rn b
A

b
 (7)

6.  Elimination of all triangles contained within the molec-
ular surface, such that the remaining spherical triangles 
now form the envelope surface. The distance between 
the center of a triangle and the center of another sphere 
to which the triangle does not belong is calculated as |A 
- xn| (see Figure 4, left). If this distance is less or equal 
to the radius of this sphere, i.e. |A - xn| ≤ RA, the triangle 
is discarded. This step is repeated with all spheres to 
which the triangle does not belong to. If the triangle 
is not discarded in this loop it belongs to the envelope 
surface. This process is repeated for all triangles form-
ing the spherical surfaces.

7.  Calculation of the molecular volume by summing all 
solid volumes spanned by the triangular surfaces and 
the origin of each sphere as depicted in Figure 4 (right). 
The molecular volume is given by:

 V v R a AAi
iA

N

A i
iA

N
1
3

( )  (8)

1.  Where ai(A) is the area of the ith triangle belonging to 
the sphere of atom A given by:

Fig. 1. Schematic representation of a pentakisdodecahedron projected 
on each atomic sphere (left) and tessellation procedure (right). The 
purple triangle on the right is the original tesserae by the projection of 
the pentakisdodecahedron. The blue triangle divides the tesserae into 
four (planar) triangles and, thus, increases the tessellation.

Fig. 2. Schematic representation for the tesserae division procedure. 
The left side shows the difference between coordinates xc (midpoint 
between x1 and x2 along the straight line joining them) and xm (mi-
dpoint between x1 and x2 along the arc joining them, on the surface of 
the sphere). The right side shows a new spherical triangle created by 
the tessellation, here xm and x′m are the new vertexes.

Fig. 3. Barycenter xb (left) of the new triangle after tessellation. This 
point lies in the center of the plane formed by the coordinates xi, xj and 
xk, while the center of the spherical triangle xn (right) is the projection 
of the barycenter on the surface of the sphere.
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Here nt denotes the number of triangles (3840) on each 
atomic sphere. In this way, the volume for molecules is cal-
culated by a purely geometrical procedure, which in terms 
of computational cost is not expensive and has been applied 
already to biomacromolecules [45].

Once the molecular volume is defined the equations of 
motion for an isothermal-isobaric ensemble [46,47] can be 
formulated. Here we give these equations for a system of N 
particles coupled to a Nosé-Hoover chain thermostat [48-50] 
with n links and a barostat:
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Here A, b and t, represent the positions of the atoms and the 
corresponding variables for the barostat and thermostat, respec-
tively. The associated momenta are denoted by pA, pb and pt. 
The dot on top of variables indicate first derivative with respect 
to time. Nf represents the number of degrees of freedom in the 
real system, V is the calculated volume, T0 is the temperature 
of the bath, Pext is the external (applied) pressure and Pint is the 
instantaneous (internal) pressure of the system, calculated as:

 P
V

M A A Fint A
A

A
A

1
3

2  (18)

The thermostat “mass” parameters, mti, are related to the 
characteristic frequency of the motion of the particles, w, by:

 m N k Tt f B1 0
2/  (19)

 m k T i nt Bi 0
2/ for = 2,  ,  (20)

The barostat “mass” parameter, mb, is defined as:

 m N k Tb f B b( ) /3 0
2 (21)

Here wb represents the coupling frequency between the 
barostat, the particles and the thermostat. The equations of mo-
tion (10)-(17) are integrated with the velocity Verlet algorithm, 
which requires the inversion of a (3N + n + 1)2 matrix at least 
2 times every time step.

Computational Details

The performance of the described methodology was tested with 
BOMD simulations for a water molecule running 50,000 steps 
with a step size of 0.2 fs. The local density approximation em-
ploying the exchange functional from Dirac [51] in combina-
tion with the correlation functional proposed by Vosko, Wilk 
and Nusair [52] was used. The target temperature was 500 K in 
all cases controlled by a Nosé-Hoover chain thermostat with 3 
chain links with a coupling frequency of 1500 cm-1. The target 
pressure was 10 atm using the here described methodology. All 
calculations were performed in the framework of ADFT with 
the double-ζ valence polarization basis set and A2 auxiliary 
function set [53].

Results and Discussion

In the first set of validation calculations we varied the basis 
function cutoff value, tV , used for the calculation of the mo-
lecular volume. In these calculations tV  was set to 10-10 a.u., 
10-20 a.u. and 10-30 a.u. and the barostat coupling frequency 
was fixed to 1500 cm-1. Figure 5 depicts the average tempera-

Fig. 4. Left: Schematic representation of the triangle elimination pro-
cedure. The point xn is a center of a triangle that belongs to the atom 
B. Because |A - xn| < RA, the volume of atom A already contains the 
triangle n, so it has to be eliminated. Right: Triangular solid volume 
corresponding to the atom A.
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ture and pressure profiles of these runs. As this figure shows 
the basis function cutoff value affects critically the BOMD 
pressure. For the here aimed pressure of 10 atm a tV  of 10-20 
a.u. yields best results. The other cutoff values fail to equilibrate 
to the target pressure of 10 atm. However, the pressure stabi-
lizes also in these runs. With tV = 10-10 a.u. the equilibrated 
pressure stabilizes around 50 atm whereas it stabilizes around 
1 atm with a cutoff value of 10-30 a.u. as Figure 5 shows. This 
indicates that the basis set cutoff value must be chosen ac-
cording to the target pressure. This is particularly critical for 
small pressures below 100 atm. Figure 5 also shows that the 
pressure equilibration is usually faster than the temperature 
equilibration. Therefore, it is recommended to first adjust the 
basis set cutoff values in NPT BOMD simulations with the 

here proposed methodology. Once this cutoff value is chosen 
it usually will work successfully for a large range of different 
temperatures. While temperature is controlled by a chain of 
thermostats, where each chain link acts as a particle buffering 
kinetic variables, the pressure control is driven by only one 
direct interacting quasi-particle, making temperature equilibra-
tion slower than pressure equilibration. In the here discussed 
examples all three calculations reach the target temperature in 
about 10 ps independent of the equilibrated pressure.

In a second set of validation calculations the basis function 
cutoff value, tV , was fixed to 10-20 a.u. and the barostat coupling 
frequency was varied (500 cm-1, 1500 cm-1 and 3000 cm-1). In 
Figure 6 the corresponding average temperature and pressure 
profiles are depicted. As can be seen from this figure the target 

Fig. 5. Profiles of the average temperature (left) and average pressure (right) of the described water molecule BOMD 
simulation with the extended system barostat. Target temperature is 500 K and target pressure is 10 atm in all cases. 
Barostat frequency, wb, is 1500 cm-1; tV = 10-10 (top), tV  = 10-20 (middle) and tV  = 10-30 (bottom).
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pressure of 10 atm is obtained in all three runs independently 
of the barostat coupling frequency. Pressure equilibration is 
similar, however, best for the run with wb = 3000 cm-1. The 
barostat frequency mainly affects temperature equilibration. In 
our case here the low frequency run (weak barostat coupling) 
slightly accelerates temperature equilibration.

Our validations shows that pressure control in finite sys-
tems can be realized with the here proposed parameter free 
volume definition. However, the described extended system 
barostat is sensible to the choice of the basis set cutoff value, 
tV. Because of the relative short time for pressure equilibra-
tion, a suitable tV  value can be found in advance to the NPT 

simulation. Once this value is determined NPT and NVT simu-
lations are very similar. In particular, the here proposed volume 
definition does not deteriorate the computational performance 
of our BOMD implementation. The thermostat coupling to the 
molecule is similar as in NVT simulations where no barostat 
is used. The here described methodology allows NPT simula-
tions of finite systems as required for molecular phase diagram 
calculations.

Figure 7 depicts the behavior of the instantaneous and av-
erage pressure of the performed BOMD simulation. The pres-
sure fluctuations are usually much larger than the total energy 
fluctuations in a NVE simulation. This is expected because the 

Fig. 6. Profiles of the average temperature (left) and average pressure (right) of the described water molecule 
BOMD simulation with the extended system barostat. Target temperature is 500 K, target pressure is 10 atm and 
tV  = 10-20 a.u. in all cases. Barostat frequency, wb  = 500 cm-1 (top), wb  = 1500 cm-1 (middle) and wb  = 3000 
cm-1 (bottom).
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pressure is related to the product of the positions and the posi-
tion derivatives of the potential energy function, i.e. the forces. 
This product, A ⋅ FA, changes faster with A than does the inter-
nal energy, hence the greater fluctuation in the pressure.

Conclusions

In this contribution we describe a new method for pressure con-
trol in first-principle molecular dynamics simulations for finite 
systems based on the extended Lagrangian methodology. The 
volume is defined via the basis function cutoff value, tV , of the 
atom centered basis set. It is calculated highly efficient by an 
analytical geometrical procedure. Our validation calculations 
show that the main adjustable parameter for pressure control is 
the basis function cutoff value. Because pressure equilibration 
is rather fast this value can be easily adjusted in short time 
test runs. Once the basis function cutoff value is adjusted the 
barostat behaves very stable in NPT simulations. With this 
implementation in deMon2k first-principle calculations of fi-
nite systems phase diagrams become possible.

Acknowledgements

G.U. Gamboa gratefully acknowledges a CONACyT Ph.D. fel-
lowship (200113). P. Calaminici and A.M. Köster acknowledge 
funding from ICyTDF (PICCO-10-47), CONACyT (60117-U, 
130726) and CIAM 107310.

References

 1. Andersen, H. C. J. Chem. Phys. 1980, 72, 2384-2393.
 2. Parrinello, M.; Rahman, A. Phys. Rev. Lett. 1980, 45, 1196-

1199.

Fig. 7. Profiles of the average (black) and the instantaneous (red) 
pressures of the described H2O BOMD simulation with the extended 
system barostat.

 3. Parrinello, M.; Rahman, A. J. Appl. Phys. 1981, 52, 7182-7190.
 4. Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055-1076.
 5. Tuckerman, M. E.; Liu, Y.; Ciccotti, G.; Martyna, G. J. J. Chem. 

Phys. 2001, 115, 1678-1702.
 6. Baltazar, S. E.; Romero, A. H.; Rodríguez-López, J. L.; Terrones, 

H.; Martoňák, R. Comp. Mat. Sci. 2006, 37, 526-536.
 7. Bernasconi, M.; Chiarotti, G. L.; Focher, P.; Parrinello, M.; To-

satti, E. Phys. Rev. Lett. 1997, 78, 2008-2011.
 8. Serra, S.; Chiarotti, G.; Scandolo, S.; Tosatti, E. Phys. Rev. Lett. 

1998, 80, 5160-5163.
 9. Laio, A.; Bernard, S.; Chiarotti, G. L.; Scandolo, S.; Tosatti, E. 

Science 2000, 287, 1027-1030.
 10. Nellis, W. J. J. Phys.: Condens. Matter 2004, 16, S923-S928.
 11. Silva, J. L.; Foguel, D.; Suarez, M.; Gomes, A. M. O.; Oliveira, 

A. J. Phys.: Condens. Matter 2004, 16, S929-S944.
 12. Ashcroft, N. W. J. Phys.: Condens. Matter 2004, 16, S945-S952.
 13. Angilella, G. G. N. J. Phys.: Condens. Matter 2004, 16, S953-

S962.
 14. Tsuji, K.; Hattori, T.; Mori, T.; Kinoshita, T.; Narushima, T.; 

Funamori, N. J. Phys.: Condens. Matter 2004, 16, S989-S996.
 15. Hattori, T.; Kinoshita, T.; Narushima T.; Tsuji, K. J. Phys.: Con-

dens. Matter 2004, 16, S997-S1006.
 16. Utsumi, W.; Okada, T.; Taniguchi, T.; Funakoshi, K.; Kikegawa, 

T.; Hamaya, N.; Shimomura, O. J. Phys.: Condens. Matter 2004, 
16, S1017-S1026.

 17. Dessapt, R.; Helm, L.; Merbach, A. E. J. Phys.: Condens. Matter 
2004, 16, S1027-S1032.

 18. Sikka, S. K. J. Phys.: Condens. Matter 2004, 16, S1033-S1040.
 19. Smeller, L.; Fidy, J.; Heremans, K. J. Phys.: Condens. Matter 

2004, 16, S1053-S1058.
 20. Torrent, J.; Alvarez-Martinez, M. T.; Heitz, F.; Liautard, J.; Balny, 

C.; Lange, R. J. Phys.: Condens. Matter 2004, 16, S1059-S1066.
 21. Kiełczewska, K.; Czerniewicz, M.; Michalak, J.; Brandt, W. J. 

Phys.: Condens. Matter 2004, 16, S1067-S1070.
 22. Struzhkin, V. V.; Hemley, R. J.; Mao, H. J. Phys.: Condens. Mat-

ter 2004, 16, S1071-S1086.
 23. Hubel, H.; van Uden, N. W. A.; Faux, D. A.; Dunstan, D. J. J. 

Phys.: Condens. Matter 2004, 16, S1181-S1186.
 24. Hara, K.; Baden, N.; Kajimoto, O. J. Phys.: Condens. Matter 2004, 

16, S1207-S1214.
 25. Balny, C. J. Phys.: Condens. Matter 2004, 16, S1245-S1254.
 26. Marchal, S.; Lange, R.; Tortora, P.; Balny, C. J. Phys.: Condens. 

Matter 2004, 16, S1271-S1276.
 27. Huppertz, H.; Emme, H. J. Phys.: Condens. Matter 2004, 16, 

S1283-S1290.
 28. Demianets, L. N.; Ivanov-Schitz, A. K. J. Phys.: Condens. Matter 

2004, 16, S1313-S1324.
 29. Martoňák, R.; Molteni, C.; Parrinello, M. Phys. Rev. Lett. 2000, 

84, 682-685.
 30. Martoňák, R.; Molteni, C.; Parrinello, M. Comp. Mater. Sci. 2001, 

20, 293-299.
 31. Sun, D. Y.; Gong, X. G. J. Phys.: Condens. Matter 2002, 14, 

L487-L494.
 32. Landau, A. I. J. Chem. Phys. 2002, 117, 8607-8612.
 33. Cococcioni, M.; Mauri, F.; Ceder, G.; Marzari, N. Phys. Rev. Lett. 

2005, 94, 145501-1—145501-4.
 34. Calvo, F.; Doye, J. P. K. Phys. Rev. B 2004, 69, 125414-1—

125414-6.
 35. Cheng, H. P.; Li, X.; Whetten, R. L.; Berry, R. S. Phys. Rev. A 

1992, 46, 791-800.
 36. Köster, A. M.; Reveles, J. U.; del Campo, J. M. J. Chem. Phys. 

2004, 121, 3417-3424.
 37. Born, M.; Oppenheimer, J. R. Ann. Physik 1927, 84, 457-484.
 38. Kohn, W.; Sham, J. Phys. Rev. 1965, 137, A1697-A1705.
 39. Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys. 1979, 

71, 4993-4999.
 40. Köster, A.M.; Geudtner, G.; Calaminici, P.; Casida, M. E.; Domin-



286   J. Mex. Chem. Soc. 2012, 56(3) Gabriel Ulises Gamboa et al.

guez, V. D.; Flores-Moreno, R.; Gamboa, G. U.; Goursot, A.; 
Heine, T.; Ipatov, A.; Janetzko, F.; del Campo, J. M.; Reveles, J. 
U.; Vela, A.; Zuniga-Gutierrez, B.; Salahub, D. R. deMon2k, Ver-
sion 3, The deMon developers, Cinvestav, Mexico City. 2011.

 41. Verlet, L. Phys. Rev. 1967, 159, 98-103.
 42. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. 

Chem. Phys. 1982, 76, 637-649.
 43. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, 

Oxford Science Publications, Oxford U. K., 1987.
 44. Gamboa, G. U.; Calaminici, P.; Geudtner, G.; Köster, A. M. J. 

Phys. Chem. A 2008, 112, 11969-11971.
 45. Silla, E.; Tuñón, I.; Pascual-Ahuir, J. L. J. Comput. Chem. 1991, 

12, 1077-1088.

 46. Martyna, G. J.; Tobias, D. J.; Klein, M. J. Chem. Phys. 1994, 101, 
4177-4189.

 47. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From 
Algorithms to Applications, Elsevier, USA, 1996.

 48. Nosé, S. J. Chem. Phys. 1984, 81, 511-519.
 49. Hoover, W. G.; Phys. Rev. A 1985, 31, 1695-1697.
 50. Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 

97, 2635-2643.
 51. Dirac, P. A. M.; Proc. Camb. Phil. Soc. 1930, 26, 376-385.
 52. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-

1211.
 53. Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. 

Chem. 1992, 70, 560-571.


