## Hydrogen Bonding Processes During Self-protonation of Natural $\alpha$ -hydroxyquinones

Georgina Armendáriz-Vidales,<sup>1</sup> Fidel Hernández-Pérez,<sup>1</sup> Felipe J. González-Bravo<sup>2</sup>, Carlos Frontana<sup>\*1</sup>

<sup>1</sup>Centro de Investigación y Desarrollo Tecnológico en Electroquímica, SC. Parque Tecnológico Querétaro S/N, Pedro Escobedo, Querétaro, 76703.

<sup>2</sup>Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Av. IPN No. 2508, Colonia San Pedro Zacatenco, Alcaldía Gustavo. A. Madero, Ciudad de México

Rafael Atlixco 186, Colonia Leyes de Reforma 1a sección, Alcaldía de Iztapalapa, Ciudad de México, 09310, México.

\*Corresponding author: Carlos Frontana, email: <u>ultrabuho@yahoo.com.mx</u>

Received June 1<sup>st</sup>, 2024; Accepted September 21<sup>st</sup>, 2024.

DOI for the article: http://dx.doi.org/10.29356/jmcs.v69i1.2316

## **Supplementary Information**

Optimized neutral structures of the studied compounds at the BHandHLYP/6-311++G- (2d,2p) level considering solvation in DMSO by the Marenich, Cramer and Truhlar model



**Fig. S1.** Optimized structure of 2-hydroxy-1,4-naphtoquinone (1).

| Atom<br>number | Symbol | X         | Y         | Z         |
|----------------|--------|-----------|-----------|-----------|
| 1              | С      | -3.069207 | 0.094219  | 0.000103  |
| 2              | С      | -2.070317 | 1.04777   | 0.000051  |
| 3              | С      | -0.743879 | 0.659451  | 0.000021  |
| 4              | С      | -0.420299 | -0.69328  | 0.000021  |
| 5              | С      | -1.424662 | -1.645589 | 0.000055  |
| 6              | С      | -2.746951 | -1.251685 | 0.000111  |
| 7              | Н      | -4.098601 | 0.399032  | 0.00014   |
| 8              | Н      | -2.310956 | 2.092855  | 0.000041  |
| 9              | С      | 0.328703  | 1.686651  | -0.000012 |
| 10             | С      | 0.990446  | -1.129106 | 0.000022  |
| 11             | Н      | -1.164592 | -2.686009 | 0.00006   |
| 12             | Н      | -3.52548  | -1.990849 | 0.000167  |
| 13             | С      | 2.032026  | -0.059556 | 0.000159  |
| 14             | С      | 1.711331  | 1.23378   | 0.00009   |
| 15             | Н      | 2.470726  | 1.994907  | 0.000099  |
| 16             | 0      | 1.31475   | -2.285255 | -0.00057  |
| 17             | 0      | 0.065171  | 2.867493  | -0.000301 |
| 18             | 0      | 3.270303  | -0.537914 | 0.000297  |
| 19             | Н      | 3.903973  | 0.17954   | 0.000358  |

 Table S1. XYZ coordinates of 2-hydroxy-1,4-naphtoquinone (neutral species).



Fig. S2. Optimized structure of taxodione (2).

| Atom<br>number | Symbol | X         | Y         | Z         |
|----------------|--------|-----------|-----------|-----------|
| 1              | С      | 0.297883  | 0.421013  | 0.031066  |
| 2              | С      | 0.795326  | -0.940396 | -0.043745 |
| 3              | С      | 2.215859  | -1.214446 | -0.174343 |
| 4              | С      | 3.14454   | -0.260231 | -0.223341 |
| 5              | С      | 2.674286  | 1.11899   | -0.121658 |
| 6              | С      | 1.230635  | 1.385538  | 0.037042  |
| 7              | С      | -0.034063 | -1.987992 | 0.048755  |
| 8              | С      | -1.189946 | 0.687623  | 0.255508  |
| 9              | С      | -1.487126 | -1.853324 | 0.129322  |
| 10             | С      | -2.051928 | -0.508157 | -0.253194 |
| 11             | Н      | -1.883787 | -0.510929 | -1.330384 |
| 12             | С      | -3.595504 | -0.363085 | -0.074991 |
| 13             | С      | -1.637782 | 1.955987  | -0.528898 |
| 14             | Н      | -0.934175 | 2.158097  | -1.32378  |
| 15             | Н      | -1.589651 | 2.803371  | 0.140724  |
| 16             | С      | -3.037188 | 1.867951  | -1.128641 |
| 17             | Н      | -3.401522 | 2.871247  | -1.317758 |
| 18             | Н      | -2.999924 | 1.373675  | -2.093805 |
| 19             | С      | -3.984163 | 1.121106  | -0.216726 |
| 20             | Н      | -3.992217 | 1.600245  | 0.756048  |
| 21             | Н      | -5.001721 | 1.174442  | -0.58789  |
| 22             | С      | -4.151694 | -0.878858 | 1.254608  |
| 23             | Н      | -5.189986 | -0.57378  | 1.337709  |
| 24             | Н      | -4.113966 | -1.955104 | 1.317364  |
| 25             | Н      | -3.627475 | -0.474273 | 2.109078  |
| 26             | С      | -4.272583 | -1.142258 | -1.206832 |
| 27             | Н      | -3.964274 | -2.17905  | -1.213922 |
| 28             | Н      | -5.349818 | -1.114309 | -1.084435 |
| 29             | Н      | -4.038185 | -0.714311 | -2.175367 |
| 30             | 0      | 3.417313  | 2.083672  | -0.154318 |
| 31             | С      | 4.625978  | -0.491728 | -0.348926 |
| 32             | Н      | 4.996656  | 0.259931  | -1.037281 |
| 33             | С      | 5.322123  | -0.263842 | 0.992754  |
| 34             | Н      | 5.099665  | 0.714458  | 1.397282  |
| 35             | Н      | 5.010389  | -1.010025 | 1.715469  |
| 36             | Н      | 6.396592  | -0.340336 | 0.873484  |
| 37             | С      | 4.979348  | -1.85986  | -0.908089 |
| 38             | Н      | 4.693974  | -2.657446 | -0.231613 |

Table S2. XYZ coordinates of taxodione (neutral species).

| 39 | Н | 4.500683  | -2.040127 | -1.86338  |
|----|---|-----------|-----------|-----------|
| 40 | Н | 6.050544  | -1.927277 | -1.054902 |
| 41 | Н | 2.486624  | -2.251074 | -0.239329 |
| 42 | 0 | 0.962692  | 2.686477  | 0.201985  |
| 43 | Н | 1.809546  | 3.139023  | 0.143569  |
| 44 | Н | 0.350824  | -2.990725 | 0.061689  |
| 45 | 0 | -2.151076 | -2.828855 | 0.39113   |
| 46 | С | -1.346255 | 0.906896  | 1.769757  |
| 47 | Н | -1.109076 | 0.006848  | 2.325759  |
| 48 | Н | -0.671142 | 1.687701  | 2.095511  |
| 49 | Н | -2.346483 | 1.213817  | 2.033222  |



Fig. S3. Optimized structure of perezone (3).

| Atom<br>number | Symbol | x         | Y         | Z         |
|----------------|--------|-----------|-----------|-----------|
| 1              | С      | -2.803558 | -0.643502 | 0.813087  |
| 2              | С      | -3.104679 | -1.020585 | -0.583613 |
| 3              | С      | -2.359771 | -0.494686 | -1.543166 |
| 4              | С      | -1.244214 | 0.436769  | -1.28599  |
| 5              | С      | -0.972788 | 0.890237  | 0.088496  |
| 6              | С      | -1.703857 | 0.335039  | 1.065669  |
| 7              | С      | 0.095317  | 1.919966  | 0.398992  |
| 8              | С      | 1.4713    | 1.297365  | 0.689061  |
| 9              | С      | 2.148159  | 0.558106  | -0.462043 |
| 10             | С      | 3.541724  | 0.148984  | -0.100816 |
| 11             | С      | 4.040114  | -1.074856 | 0.023399  |
| 12             | С      | 5.476017  | -1.285473 | 0.39856   |
| 13             | С      | 3.271051  | -2.341951 | -0.189978 |
| 14             | С      | 0.169043  | 3.080565  | -0.590527 |
| 15             | 0      | -0.571945 | 0.7934    | -2.227383 |
| 16             | 0      | -3.427107 | -1.099842 | 1.73349   |
| 17             | С      | -4.221835 | -1.974697 | -0.811603 |
| 18             | 0      | -1.567703 | 0.580283  | 2.369221  |
| 19             | Н      | -2.518858 | -0.736633 | -2.577784 |
| 20             | Н      | -0.202238 | 2.390861  | 1.332183  |
| 21             | Н      | 2.121151  | 2.100641  | 1.02332   |
| 22             | Н      | 1.378495  | 0.613215  | 1.527274  |
| 23             | Н      | 1.552944  | -0.295536 | -0.752219 |
| 24             | Н      | 2.193386  | 1.210619  | -1.32751  |
| 25             | Н      | 4.213345  | 0.972991  | 0.088719  |
| 26             | Н      | 5.997197  | -0.347832 | 0.54182   |
| 27             | Н      | 5.554825  | -1.863357 | 1.315148  |
| 28             | Н      | 5.996898  | -1.850941 | -0.369086 |
| 29             | Н      | 2.230152  | -2.178509 | -0.42537  |
| 30             | Н      | 3.713074  | -2.919305 | -0.997063 |
| 31             | Н      | 3.321217  | -2.965853 | 0.69764   |
| 32             | Н      | 0.795607  | 3.859102  | -0.170879 |
| 33             | Н      | -0.813015 | 3.505824  | -0.761309 |
| 34             | Н      | 0.575207  | 2.789678  | -1.545086 |
| 35             | Н      | -4.352062 | -2.160425 | -1.868142 |
| 36             | Н      | -4.029922 | -2.916962 | -0.311872 |
| 37             | Н      | -5.147965 | -1.58421  | -0.40679  |
| 38             | Н      | -0.857533 | 1.198231  | 2.527213  |

 Table S3. XYZ coordinates of perezone (neutral species).



Fig. S4. Optimized structure of horminone (4).

| Atom   | Symbol | x         | v         | Z         |
|--------|--------|-----------|-----------|-----------|
| number | Symbol | Λ         | 1         |           |
| 1      | С      | -0.068429 | -0.393224 | 0.214217  |
| 2      | С      | -0.505721 | 0.865203  | 0.229763  |
| 3      | С      | -1.947345 | 1.200294  | 0.067308  |
| 4      | С      | -2.967335 | 0.151035  | -0.015298 |
| 5      | С      | -2.535082 | -1.11117  | 0.038437  |
| 6      | С      | -1.092149 | -1.473452 | 0.193869  |
| 7      | С      | 0.392907  | 2.06127   | 0.40245   |
| 8      | Н      | -0.019195 | 2.664176  | 1.204072  |
| 9      | С      | 1.403372  | -0.787116 | 0.275263  |
| 10     | С      | 1.802049  | 1.659537  | 0.75974   |
| 11     | Н      | 1.842807  | 1.440325  | 1.818866  |
| 12     | Н      | 2.440656  | 2.515938  | 0.59088   |
| 13     | С      | 2.253368  | 0.462953  | -0.058629 |
| 14     | Н      | 2.001745  | 0.69414   | -1.089227 |
| 15     | С      | 3.794904  | 0.246264  | -0.055516 |
| 16     | С      | 1.708694  | -1.876715 | -0.795909 |
| 17     | Н      | 0.944577  | -1.865648 | -1.563203 |
| 18     | Н      | 1.649527  | -2.847241 | -0.324979 |
| 19     | С      | 3.072998  | -1.719788 | -1.467846 |
| 20     | Н      | 3.378661  | -2.679992 | -1.867922 |
| 21     | Н      | 2.994662  | -1.050294 | -2.317638 |
| 22     | С      | 4.120453  | -1.188285 | -0.509738 |
| 23     | Н      | 4.187045  | -1.848107 | 0.348462  |
| 24     | Н      | 5.101041  | -1.198055 | -0.973866 |
| 25     | С      | 4.455231  | 0.513378  | 1.296837  |
| 26     | Н      | 5.513193  | 0.279946  | 1.233511  |
| 27     | Н      | 4.37315   | 1.554101  | 1.586817  |
| 28     | Н      | 4.037012  | -0.088852 | 2.091441  |
| 29     | С      | 4.39903   | 1.223661  | -1.067284 |
| 30     | Н      | 4.115879  | 2.247695  | -0.851998 |
| 31     | Н      | 5.482158  | 1.171193  | -1.04561  |
| 32     | Н      | 4.075482  | 0.997122  | -2.077019 |
| 33     | 0      | -2.25449  | 2.372325  | -0.019316 |
| 34     | 0      | -0.808726 | -2.632215 | 0.329065  |
| 35     | 0      | -3.302245 | -2.197954 | -0.024861 |
| 36     | Н      | -4.222063 | -1.962512 | -0.111635 |
| 37     | 0      | 0.423896  | 2.843222  | -0.783012 |
| 38     | Н      | -0.462691 | 3.163266  | -0.922118 |

Table S4. XYZ coordinates of horminone (neutral species).

| 39 | С | -4.411151 | 0.575263  | -0.159457 |
|----|---|-----------|-----------|-----------|
| 40 | Н | -4.386418 | 1.653921  | -0.192694 |
| 41 | С | -5.043692 | 0.112188  | -1.471024 |
| 42 | Н | -4.439511 | 0.404937  | -2.320878 |
| 43 | Н | -5.188425 | -0.96193  | -1.526369 |
| 44 | Н | -6.021613 | 0.564896  | -1.583134 |
| 45 | С | -5.262958 | 0.193954  | 1.050873  |
| 46 | Н | -5.399969 | -0.876683 | 1.161248  |
| 47 | Н | -4.823416 | 0.563866  | 1.96898   |
| 48 | Н | -6.250427 | 0.629259  | 0.95282   |
| 49 | C | 1.66767   | -1.34375  | 1.685071  |
| 50 | Н | 1.545345  | -0.585459 | 2.447526  |
| 51 | Н | 0.97701   | -2.145761 | 1.901863  |
| 52 | Н | 2.66541   | -1.74627  | 1.768016  |



Fig. S5. Optimized structure of 7 α-O-methyl-conacytone.

| Tag | Symbol | Х         | Y         | Z         |
|-----|--------|-----------|-----------|-----------|
| 1   | С      | 0.212466  | -0.433464 | 0.027089  |
| 2   | С      | 0.691274  | 0.781687  | -0.226243 |
| 3   | С      | 2.157168  | 1.036724  | -0.326227 |
| 4   | С      | 3.125835  | -0.021846 | 0.003672  |
| 5   | С      | 2.637389  | -1.242523 | 0.233118  |
| 6   | С      | 1.179942  | -1.550656 | 0.162875  |
| 7   | С      | -0.182872 | 1.978858  | -0.46042  |
| 8   | Н      | 0.241332  | 2.541659  | -1.282759 |
| 9   | С      | -1.265192 | -0.754865 | 0.139255  |
| 10  | С      | -1.609408 | 1.589567  | -0.787946 |
| 11  | Н      | -1.650317 | 1.2317    | -1.80652  |
| 12  | Н      | -2.219354 | 2.480498  | -0.730626 |
| 13  | С      | -2.095356 | 0.544976  | 0.202091  |
| 14  | Н      | -1.920041 | 0.978427  | 1.1788    |
| 15  | С      | -3.589778 | 0.176636  | 0.131741  |
| 16  | С      | -1.56495  | -1.579885 | 1.431873  |
| 17  | Н      | -0.696367 | -1.583691 | 2.076244  |
| 18  | Н      | -1.740123 | -2.611306 | 1.157764  |
| 19  | С      | -2.754919 | -1.060481 | 2.230474  |
| 20  | Н      | -3.043297 | -1.814007 | 2.955135  |
| 21  | Н      | -2.456879 | -0.193584 | 2.808373  |
| 22  | С      | -3.950289 | -0.705365 | 1.359795  |
| 23  | Н      | -4.421254 | -1.618154 | 1.013916  |
| 24  | Н      | -4.686556 | -0.192535 | 1.96722   |
| 25  | С      | -3.824216 | -0.621371 | -1.1393   |
| 26  | Н      | -4.856016 | -0.940378 | -1.201975 |
| 27  | Н      | -3.604624 | -0.026786 | -2.01957  |
| 28  | С      | -4.483828 | 1.408277  | 0.102122  |
| 29  | Н      | -4.354962 | 1.989506  | -0.802354 |
| 30  | Н      | -5.525898 | 1.112922  | 0.156772  |
| 31  | Н      | -4.279335 | 2.053943  | 0.949309  |
| 32  | 0      | 2.538461  | 2.123686  | -0.693928 |
| 33  | 0      | 0.826049  | -2.698608 | 0.205341  |
| 34  | 0      | 3.354302  | -2.333205 | 0.510357  |
| 35  | Н      | 4.28554   | -2.131076 | 0.53762   |
| 36  | 0      | -0.109858 | 2.77143   | 0.713991  |
| 37  | С      | 4.592518  | 0.343433  | 0.000294  |
| 38  | Н      | 4.620042  | 1.401844  | -0.210011 |
| 39  | C      | 5.261318  | 0.150092  | 1.360517  |

**Table S5.** XYZ coordinates of 7  $\alpha$ -O-methyl-conacytone (neutral species).

| 40 | Н | 4.718803  | 0.671794  | 2.139354  |
|----|---|-----------|-----------|-----------|
| 41 | Н | 5.345054  | -0.889113 | 1.661282  |
| 42 | Н | 6.268338  | 0.548646  | 1.328539  |
| 43 | С | 5.368159  | -0.343506 | -1.123076 |
| 44 | Н | 5.43031   | -1.420339 | -1.005609 |
| 45 | Н | 4.913165  | -0.146524 | -2.086081 |
| 46 | Н | 6.384214  | 0.032121  | -1.148716 |
| 47 | С | -1.67864  | -1.623214 | -1.074946 |
| 48 | Н | -1.272637 | -2.614247 | -0.946829 |
| 49 | 0 | -3.053668 | -1.809864 | -1.152909 |
| 50 | 0 | -1.177157 | -1.06119  | -2.255817 |
| 51 | Н | -1.367511 | -1.664093 | -2.969139 |
| 52 | C | -0.264762 | 4.146201  | 0.479916  |
| 53 | Н | 0.524399  | 4.526539  | -0.162326 |
| 54 | Н | -1.225443 | 4.377014  | 0.028627  |
| 55 | Н | -0.206772 | 4.645563  | 1.437252  |

## Calculated properties from electron structure calculations of the studied compounds at the BHandHLYP/6-311++G- (2d,2p) level considering solvation in DMSO by the Marenich, Cramer and Truhlar model

**Table S6.** Vertical ionization Potentials (I), vertical electron affinities (A) and global electroaccepting powers  $(\omega^+)$  for compounds 1 - 5.

|          | Calculated property (eV) |        |            |  |  |
|----------|--------------------------|--------|------------|--|--|
| Compound | Ι                        | Α      | $\omega^+$ |  |  |
| 1        | 7.1137                   | 3.0037 | 4.0275     |  |  |
| 2        | 6.1755                   | 3.0097 | 4.5640     |  |  |
| 3        | 6.7804                   | 3.0177 | 4.1643     |  |  |
| 4        | 6.7828                   | 3.0140 | 4.1531     |  |  |
| 5        | 6.7518                   | 2.9058 | 3.8887     |  |  |

**Table S7.** Calculated charges from Hirshfeld population analysis for N+1 and N electron structures, condensedto-atom Fukui function  $f^+[\rho_{N_0}; r]$  and local electroaccepting powers  $\omega^+(r)$  for 2-hydroxy-1,4-napthoquinone (1).

|        |      | Calc         |                                       |                    |                 |
|--------|------|--------------|---------------------------------------|--------------------|-----------------|
| Number | Atom | $q_i(N + 1)$ | $\mathbf{q}_{\mathbf{i}}(\mathbf{N})$ | $f^+[ ho_{N_0};r]$ | $\omega_i^+(r)$ |
| 1      | С    | 0.0252       | -0.0179                               | 0.0431             | 0.1738          |
| 2      | С    | -0.0004      | -0.0231                               | 0.0227             | 0.0915          |
| 3      | С    | 0.0118       | -0.0152                               | 0.0270             | 0.1087          |
| 4      | С    | 0.0130       | -0.0184                               | 0.0314             | 0.1265          |
| 5      | С    | 0.0038       | -0.0198                               | 0.0237             | 0.0953          |
| 6      | С    | 0.0189       | -0.0212                               | 0.0401             | 0.1615          |
| 7      | Н    | 0.0798       | 0.0625                                | 0.0173             | 0.0696          |
| 8      | Н    | 0.0682       | 0.0546                                | 0.0137             | 0.0550          |
| 9      | С    | 0.1932       | 0.1573                                | 0.0359             | 0.1444          |
| 10     | С    | 0.1899       | 0.1704                                | 0.0195             | 0.0787          |
| 11     | Н    | 0.0699       | 0.0564                                | 0.0135             | 0.0542          |
| 12     | Н    | 0.0787       | 0.0621                                | 0.0166             | 0.0670          |
| 13     | С    | 0.2400       | 0.1074                                | 0.1326             | 0.5339          |
| 14     | С    | 0.1461       | -0.0631                               | 0.2092             | 0.8427          |
| 15     | Н    | 0.1322       | 0.0688                                | 0.0634             | 0.2554          |
| 16     | 0    | -0.2360      | -0.2753                               | 0.0393             | 0.1583          |
| 17     | 0    | -0.2360      | -0.3086                               | 0.0726             | 0.2923          |
| 18     | 0    | -0.0480      | -0.1815                               | 0.1336             | 0.5380          |
| 19     | Н    | 0.2492       | 0.2042                                | 0.0450             | 0.1811          |

|        |      | Cal        |          |                     |                 |
|--------|------|------------|----------|---------------------|-----------------|
| Number | Atom | $q_i(N+1)$ | $q_i(N)$ | $f^+[\rho_{N_0};r]$ | $\omega_i^+(r)$ |
| 1      | С    | 0.1045     | -0.0124  | 0.1169              | 0.5335          |
| 2      | С    | 0.0520     | 0.0124   | 0.0396              | 0.1808          |
| 3      | С    | 0.0191     | -0.0104  | 0.0295              | 0.1348          |
| 4      | С    | 0.0135     | -0.0047  | 0.0182              | 0.0832          |
| 5      | С    | 0.1872     | 0.1528   | 0.0345              | 0.1573          |
| 6      | С    | 0.1938     | 0.0722   | 0.1217              | 0.5552          |
| 7      | С    | 0.0877     | -0.0220  | 0.1097              | 0.5007          |
| 8      | С    | 0.0281     | 0.0199   | 0.0082              | 0.0376          |
| 9      | С    | 0.1896     | 0.1715   | 0.0182              | 0.0830          |
| 10     | С    | -0.0172    | -0.0235  | 0.0062              | 0.0284          |
| 11     | Н    | 0.0649     | 0.0534   | 0.0115              | 0.0527          |
| 12     | С    | 0.0178     | 0.0158   | 0.0020              | 0.0089          |
| 13     | С    | -0.0446    | -0.0515  | 0.0069              | 0.0316          |
| 14     | Н    | 0.0340     | 0.0248   | 0.0092              | 0.0418          |
| 15     | Н    | 0.0361     | 0.0274   | 0.0087              | 0.0396          |
| 16     | С    | -0.0431    | -0.0497  | 0.0067              | 0.0304          |
| 17     | Н    | 0.0381     | 0.0308   | 0.0073              | 0.0334          |
| 18     | Н    | 0.0343     | 0.0291   | 0.0052              | 0.0236          |
| 19     | С    | -0.0484    | -0.0513  | 0.0029              | 0.0132          |
| 20     | Н    | 0.0334     | 0.0298   | 0.0036              | 0.0164          |
| 21     | Н    | 0.0353     | 0.0300   | 0.0053              | 0.0243          |
| 22     | С    | -0.0901    | -0.0929  | 0.0028              | 0.0129          |
| 23     | Н    | 0.0310     | 0.0263   | 0.0047              | 0.0214          |
| 24     | Н    | 0.0210     | 0.0184   | 0.0026              | 0.0119          |
| 25     | Н    | 0.0296     | 0.0267   | 0.0029              | 0.0133          |
| 26     | С    | -0.0837    | -0.0871  | 0.0034              | 0.0157          |
| 27     | Н    | 0.0248     | 0.0223   | 0.0024              | 0.0110          |
| 28     | Н    | 0.0327     | 0.0281   | 0.0046              | 0.0212          |
| 29     | Н    | 0.0320     | 0.0289   | 0.0032              | 0.0144          |
| 30     | 0    | -0.2184    | -0.2841  | 0.0657              | 0.2999          |
| 31     | С    | -0.0101    | -0.0150  | 0.0049              | 0.0224          |
| 32     | Н    | 0.0423     | 0.0360   | 0.0063              | 0.0288          |
| 33     | С    | -0.0772    | -0.0814  | 0.0042              | 0.0192          |
| 34     | Н    | 0.0290     | 0.0264   | 0.0026              | 0.0119          |
| 35     | Н    | 0.0335     | 0.0299   | 0.0036              | 0.0166          |
| 36     | Н    | 0.0383     | 0.0335   | 0.0049              | 0.0222          |
| 37     | С    | -0.0739    | -0.0782  | 0.0043              | 0.0195          |
| 38     | Н    | 0.0376     | 0.0343   | 0.0033              | 0.0151          |
| 39     | Н    | 0.0353     | 0.0321   | 0.0032              | 0.0147          |
| 40     | H    | 0.0392     | 0.0347   | 0.0045              | 0.0205          |
| 41     | H    | 0.0826     | 0.0641   | 0.0185              | 0.0843          |
| 42     | 0    | -0.0861    | -0.1892  | 0.1030              | 0.4701          |
| 43     | H    | 0.1879     | 0.1516   | 0.0363              | 0.1657          |
| 44     | H    | 0.0992     | 0.0613   | 0.0379              | 0.1731          |
| 45     | 0    | -0.2425    | -0.2865  | 0.0440              | 0.2007          |
| 46     | C    | -0.0662    | -0.0821  | 0.0159              | 0.0725          |
| 47     | I H  | 0.0453     | 0.0330   | 1 0.0123            | 0.0562          |

**Table S8.** Calculated charges from Hirshfeld population analysis for N+1 and N electron structures, condensed-to-atom Fukui function  $f^+[\rho_{N_0}; r]$  and local electroaccepting powers  $\omega^+(r)$  for taxodione (2)

| 48 | Н | 0.0390 | 0.0288 | 0.0102 | 0.0463 |
|----|---|--------|--------|--------|--------|
| 49 | Н | 0.0520 | 0.0363 | 0.0157 | 0.0718 |

**Table S9.** Calculated charges from Hirshfeld population analysis for N+1 and N electron structures, condensed-to-atom Fukui function  $f^+[\rho_{N_0}; r]$  and local electroaccepting powers  $\omega^+(r)$  for perezone (3).

|        |      | Ca           |          |                    |                 |
|--------|------|--------------|----------|--------------------|-----------------|
| Number | Atom | $q_i(N + 1)$ | $q_i(N)$ | $f^+[ ho_{N_0};r]$ | $\omega_i^+(r)$ |
| 1      | С    | 0.1865       | 0.1670   | 0.0195             | 0.0811          |
| 2      | С    | 0.0472       | 0.0146   | 0.0326             | 0.1359          |
| 3      | С    | 0.0101       | -0.0289  | 0.0390             | 0.1622          |
| 4      | С    | 0.1859       | 0.1601   | 0.0257             | 0.1072          |
| 5      | С    | 0.0998       | -0.0294  | 0.1292             | 0.5381          |
| 6      | С    | 0.1985       | 0.0921   | 0.1064             | 0.4432          |
| 7      | С    | 0.0095       | -0.0099  | 0.0195             | 0.0810          |
| 8      | С    | -0.0214      | -0.0452  | 0.0239             | 0.0994          |
| 9      | С    | -0.0449      | -0.0560  | 0.0112             | 0.0465          |
| 10     | С    | -0.0217      | -0.0671  | 0.0454             | 0.1891          |
| 11     | С    | 0.0328       | -0.0127  | 0.0455             | 0.1894          |
| 12     | С    | -0.0748      | -0.0860  | 0.0112             | 0.0466          |
| 13     | С    | -0.0728      | -0.0829  | 0.0100             | 0.0418          |
| 14     | С    | -0.0685      | -0.0831  | 0.0145             | 0.0606          |
| 15     | 0    | -0.2262      | -0.2756  | 0.0494             | 0.2055          |
| 16     | 0    | -0.2339      | -0.2724  | 0.0385             | 0.1604          |
| 17     | С    | -0.0585      | -0.0707  | 0.0123             | 0.0511          |
| 18     | 0    | -0.0920      | -0.1895  | 0.0975             | 0.4060          |
| 19     | Н    | 0.0840       | 0.0628   | 0.0212             | 0.0883          |
| 20     | Н    | 0.0647       | 0.0412   | 0.0235             | 0.0977          |
| 21     | Н    | 0.0548       | 0.0341   | 0.0206             | 0.0859          |
| 22     | Н    | 0.0425       | 0.0283   | 0.0142             | 0.0592          |
| 23     | Н    | 0.0379       | 0.0299   | 0.0080             | 0.0331          |
| 24     | Н    | 0.0423       | 0.0312   | 0.0111             | 0.0461          |
| 25     | Н    | 0.0460       | 0.0295   | 0.0165             | 0.0685          |
| 26     | Н    | 0.0400       | 0.0334   | 0.0066             | 0.0273          |
| 27     | Н    | 0.0448       | 0.0336   | 0.0112             | 0.0468          |
| 28     | Н    | 0.0441       | 0.0337   | 0.0104             | 0.0432          |
| 29     | Н    | 0.0412       | 0.0358   | 0.0054             | 0.0224          |
| 30     | Н    | 0.0465       | 0.0360   | 0.0105             | 0.0438          |
| 31     | Н    | 0.0459       | 0.0357   | 0.0101             | 0.0422          |
| 32     | Н    | 0.0473       | 0.0322   | 0.0151             | 0.0628          |
| 33     | Н    | 0.0435       | 0.0306   | 0.0129             | 0.0537          |
| 34     | Н    | 0.0344       | 0.0252   | 0.0092             | 0.0383          |
| 35     | Н    | 0.0577       | 0.0484   | 0.0092             | 0.0384          |
| 36     | Н    | 0.0574       | 0.0465   | 0.0109             | 0.0453          |
| 37     | Н    | 0.0571       | 0.0463   | 0.0109             | 0.0452          |
| 38     | Н    | 0.2122       | 0 1808   | 0.0314             | 0 1 3 0 8       |

|        |      | Ca             |                    |                    |                 |
|--------|------|----------------|--------------------|--------------------|-----------------|
| Number | Atom | $q_{i}(N + 1)$ | q <sub>i</sub> (N) | $f^+[ ho_{N_0};r]$ | $\omega_i^+(r)$ |
| 1      | С    | 0.0562         | 0.0139             | 0.0423             | 0.1758          |
| 2      | С    | 0.0355         | -0.0043            | 0.0397             | 0.1650          |
| 3      | С    | 0.1967         | 0.1656             | 0.0311             | 0.1292          |
| 4      | С    | 0.1355         | -0.0334            | 0.1689             | 0.7015          |
| 5      | С    | 0.2236         | 0.0949             | 0.1287             | 0.5345          |
| 6      | С    | 0.1939         | 0.1728             | 0.0210             | 0.0874          |
| 7      | С    | 0.0645         | 0.0565             | 0.0080             | 0.0333          |
| 8      | Н    | 0.0498         | 0.0378             | 0.0119             | 0.0495          |
| 9      | С    | 0.0190         | 0.0146             | 0.0044             | 0.0184          |
| 10     | С    | -0.0483        | -0.0523            | 0.0040             | 0.0165          |
| 11     | Н    | 0.0443         | 0.0391             | 0.0051             | 0.0214          |
| 12     | Н    | 0.0442         | 0.0376             | 0.0066             | 0.0273          |
| 13     | С    | -0.0219        | -0.0235            | 0.0015             | 0.0064          |
| 14     | Н    | 0.0324         | 0.0289             | 0.0035             | 0.0146          |
| 15     | С    | 0.0142         | 0.0129             | 0.0013             | 0.0054          |
| 16     | С    | -0.0472        | -0.0510            | 0.0038             | 0.0158          |
| 17     | Н    | 0.0306         | 0.0266             | 0.0041             | 0.0169          |
| 18     | Н    | 0.0301         | 0.0256             | 0.0045             | 0.0185          |
| 19     | С    | -0.0463        | -0.0496            | 0.0033             | 0.0138          |
| 20     | Н    | 0.0327         | 0.0289             | 0.0038             | 0.0156          |
| 21     | Н    | 0.0302         | 0.0278             | 0.0024             | 0.0101          |
| 22     | С    | -0.0508        | -0.0520            | 0.0013             | 0.0054          |
| 23     | Н    | 0.0305         | 0.0288             | 0.0017             | 0.0069          |
| 24     | Н    | 0.0305         | 0.0280             | 0.0025             | 0.0106          |
| 25     | С    | -0.0841        | -0.0855            | 0.0013             | 0.0055          |
| 26     | Н    | 0.0298         | 0.0279             | 0.0019             | 0.0080          |
| 27     | Н    | 0.0298         | 0.0283             | 0.0014             | 0.0059          |
| 28     | Н    | 0.0299         | 0.0287             | 0.0012             | 0.0049          |
| 29     | С    | -0.0828        | -0.0843            | 0.0015             | 0.0064          |
| 30     | Н    | 0.0296         | 0.0282             | 0.0014             | 0.0057          |
| 31     | Н    | 0.0291         | 0.0272             | 0.0019             | 0.0081          |
| 32     | Н    | 0.0298         | 0.0286             | 0.0012             | 0.0049          |
| 33     | 0    | -0.2059        | -0.2670            | 0.0611             | 0.2538          |
| 34     | 0    | -0.2027        | -0.2454            | 0.0427             | 0.1772          |
| 35     | 0    | -0.0635        | -0.1860            | 0.1225             | 0.5088          |
| 36     | Н    | 0.2090         | 0.1741             | 0.0349             | 0.1451          |
| 37     | 0    | -0.2520        | -0.2667            | 0.0147             | 0.0609          |
| 38     | H    | 0.1426         | 0.1361             | 0.0065             | 0.0268          |
| 39     | C    | -0.0016        | -0.0193            | 0.0177             | 0.0735          |
| 40     | H    | 0.0536         | 0.0334             | 0.0202             | 0.0838          |
| 41     | C    | -0.0544        | -0.0759            | 0.0215             | 0.0892          |
| 42     | H    | 0.0506         | 0.0353             | 0.0153             | 0.0634          |
| 43     | H    | 0.0441         | 0.0330             | 0.0111             | 0.0462          |
| 44     | H    | 0.0599         | 0.0384             | 0.0215             | 0.0891          |
| 45     |      | -0.0552        | -0.0764            | 0.0212             | 0.0879          |
| 40     | H    | 0.043/         | 0.0326             | 0.0111             | 0.0462          |
| 4/     | I H  | 0.0502         | 0.0300             | 0.0157             | 0.0030          |

**Table S10.** Calculated charges from Hirshfeld population analysis for N+1 and N electron structures, condensed-to-atom Fukui function  $f^+[\rho_{N_0}; r]$  and local electroaccepting powers  $\omega^+(r)$  for horminone (4)

| 48 | Н | 0.0589  | 0.0380  | 0.0208 | 0.0865 |
|----|---|---------|---------|--------|--------|
| 49 | С | -0.0771 | -0.0842 | 0.0071 | 0.0296 |
| 50 | Н | 0.0374  | 0.0318  | 0.0056 | 0.0233 |
| 51 | Н | 0.0286  | 0.0243  | 0.0043 | 0.0178 |
| 52 | Н | 0.0429  | 0.0352  | 0.0077 | 0.0321 |

**Table S11.** Calculated charges  $q_i$  from Hirshfeld population analysis for N+1 and N electron structures, condensed-to-atom Fukui function  $f^+[\rho_{N_0}; r]$  and local electroaccepting powers  $\omega^+(r)$  for 7a-O-methyl-conacytone (5)

|        |      | Calc         |          |                    |                 |
|--------|------|--------------|----------|--------------------|-----------------|
| Number | Atom | $q_i(N + 1)$ | $q_i(N)$ | $f^+[ ho_{N_0};r]$ | $\omega_i^+(r)$ |
| 1      | С    | 0.0432       | 0.0077   | 0.0354             | 0.1378          |
| 2      | С    | 0.0363       | 0.0002   | 0.0361             | 0.1405          |
| 3      | С    | 0.1943       | 0.1633   | 0.0309             | 0.1202          |
| 4      | С    | 0.1384       | -0.0315  | 0.1700             | 0.6609          |
| 5      | С    | 0.2227       | 0.0900   | 0.1327             | 0.5159          |
| 6      | С    | 0.1913       | 0.1701   | 0.0212             | 0.0824          |
| 7      | С    | 0.0636       | 0.0572   | 0.0064             | 0.0250          |
| 8      | Н    | 0.0483       | 0.0384   | 0.0100             | 0.0388          |
| 9      | С    | 0.0058       | 0.0027   | 0.0031             | 0.0122          |
| 10     | С    | -0.0551      | -0.0587  | 0.0036             | 0.0139          |
| 11     | Н    | 0.0342       | 0.0301   | 0.0041             | 0.0159          |
| 12     | Н    | 0.0439       | 0.0372   | 0.0067             | 0.0259          |
| 13     | С    | -0.0254      | -0.0268  | 0.0014             | 0.0054          |
| 14     | Н    | 0.0364       | 0.0327   | 0.0037             | 0.0145          |
| 15     | С    | 0.0046       | 0.0032   | 0.0014             | 0.0055          |
| 16     | С    | -0.0445      | -0.0484  | 0.0039             | 0.0153          |
| 17     | Н    | 0.0344       | 0.0302   | 0.0042             | 0.0165          |
| 18     | Н    | 0.0335       | 0.0288   | 0.0047             | 0.0183          |
| 19     | С    | -0.0450      | -0.0483  | 0.0033             | 0.0129          |
| 20     | Н    | 0.0355       | 0.0315   | 0.0039             | 0.0153          |
| 21     | Н    | 0.0308       | 0.0282   | 0.0026             | 0.0102          |
| 22     | C    | -0.0497      | -0.0511  | 0.0014             | 0.0055          |
| 23     | Н    | 0.0274       | 0.0256   | 0.0019             | 0.0073          |
| 24     | Н    | 0.0311       | 0.0286   | 0.0025             | 0.0097          |
| 25     | C    | 0.0299       | 0.0282   | 0.0017             | 0.0068          |
| 26     | Н    | 0.0445       | 0.0413   | 0.0031             | 0.0121          |
| 27     | Н    | 0.0342       | 0.0319   | 0.0023             | 0.0088          |
| 28     | С    | -0.0765      | -0.0785  | 0.0020             | 0.0078          |
| 29     | Н    | 0.0336       | 0.0320   | 0.0016             | 0.0064          |
| 30     | Н    | 0.0344       | 0.0322   | 0.0022             | 0.0086          |
| 31     | Н    | 0.0362       | 0.0346   | 0.0016             | 0.0063          |
| 32     | 0    | -0.2059      | -0.2709  | 0.0650             | 0.2527          |
| 33     | 0    | -0.2056      | -0.2499  | 0.0443             | 0.1724          |
| 34     | 0    | -0.0637      | -0.1893  | 0.1256             | 0.4883          |
| 35     | Н    | 0.2092       | 0.1733   | 0.0359             | 0.1397          |
| 36     | 0    | -0.2004      | -0.2057  | 0.0053             | 0.0206          |
| 37     | С    | -0.0017      | -0.0196  | 0.0179             | 0.0695          |
| 38     | Н    | 0.0536       | 0.0330   | 0.0205             | 0.0799          |
| 39     | С    | -0.0548      | -0.0758  | 0.0211             | 0.0820          |

| 40 | Н | 0.0505  | 0.0352  | 0.0153 | 0.0596 |
|----|---|---------|---------|--------|--------|
| 41 | Н | 0.0439  | 0.0329  | 0.0110 | 0.0428 |
| 42 | Н | 0.0592  | 0.0382  | 0.0210 | 0.0815 |
| 43 | С | -0.0547 | -0.0769 | 0.0221 | 0.0860 |
| 44 | Н | 0.0433  | 0.0319  | 0.0113 | 0.0441 |
| 45 | Н | 0.0499  | 0.0345  | 0.0154 | 0.0598 |
| 46 | Н | 0.0593  | 0.0375  | 0.0217 | 0.0846 |
| 47 | С | 0.1306  | 0.1276  | 0.0030 | 0.0117 |
| 48 | Н | 0.0359  | 0.0320  | 0.0039 | 0.0153 |
| 49 | 0 | -0.1997 | -0.2051 | 0.0054 | 0.0210 |
| 50 | 0 | -0.2301 | -0.2324 | 0.0023 | 0.0090 |
| 51 | Н | 0.1759  | 0.1711  | 0.0048 | 0.0188 |
| 52 | С | 0.0134  | 0.0084  | 0.0050 | 0.0193 |
| 53 | Н | 0.0357  | 0.0318  | 0.0039 | 0.0153 |
| 54 | Н | 0.0389  | 0.0348  | 0.0042 | 0.0162 |
| 55 | Н | 0.0451  | 0.0411  | 0.0041 | 0.0158 |