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Abstract.This review presents an in-depth analysis of the progress and achievements in the study of porous 

structures by the Physicochemical of Surfaces Academic Area at the Universidad Autónoma Metropolitana, 

Iztapalapa's Chemistry Department. A straightforward model for depicting disordered structures has been 

introduced here, facilitating the discovery of correlations between adjacent elements within these structures. 

Such correlations have proven to be crucial in the classification and analysis of different disordered porous 

materials and have been instrumental in the interpretation and categorization of nitrogen adsorption isotherms. 

Keywords: Adsorption isotherms; Physicochemical of surfaces academic area, and porous media. 

 

Resumen. Este artículo proporciona una revisión completa de los avances y aportes realizados en la 

caracterización de estructuras porosas dentro del Área Académica de Fisicoquímica de Superficies del 

Departamento de Química de la Universidad Autónoma Metropolitana, Iztapalapa. Dentro de esta Área 

Académica se ha desarrollado un modelo simple para describir estructuras desordenadas, que permitió 

visualizar la correlación entre elementos vecinos que constituyen dichas estructuras. Estas correlaciones han 

resultado en un factor clave para clasificar y categorizar diversos medios porosos desordenados, además de 

servir como herramientas útiles para interpretar y clasificar las isotermas de adsorción del nitrógeno. 

Palabras clave: Isotermas de adsorción, área académica de Fisicoquímica de superficies, y medios porosos. 
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Introduction  

 
Porous media play a crucial role in various technological applications, serving as catalytic supports, 

membranes, filters, and separation and sensing devices for gas molecules and solutions [1]. In recent years, 

there has been remarkable advancement in synthesizing modern porous solids with ordered structures, including 

Mobil Composition of Matter No. 41 (MCM-41), Santa Barbara Amorphous-15 (SBA-15), and Metal-organic 

frameworks (MOFs) [2-4]. These advancements allow precise characterization of the size and geometrical 

structures of such materials. The surface area of porous solids can be evaluated through gas adsorption, using 

the Brunauer-Emmett-Teller (BET) equation, which is widely employed for predicting and explaining the 

adsorptive properties of solids [5,6]. Additionally, another crucial parameter in characterizing porous solids is 

the pore size distribution (PSD). Three groups of techniques have become essential tools for determining PSD 

with high precision. The first group consists of theoretical techniques derived from the classical theory of 

liquids, known as classical density functional theory (DFT) [7-9]. The second group includes molecular 

simulation techniques such as Monte Carlo simulations and molecular dynamics simulations based on force 

fields [10-12]. The third group comprises advanced techniques, including quantum based methods and ab initio 

molecular dynamics for studying pore size distribution in complex materials [13-16]. 

However, several decades ago, before the advent of modern solids, it was very difficult to describe in 

a precise manner the structure of materials such as Vycor glasses, silicas, carbons and clays. And even more 

complex, to establish a direct correlation between solid structure and the physicochemical phenomena occurring 

during their technological applications. In this context, numerous scientific efforts aimed to provide a theoretical 

framework for understanding the effect of pore geometry and interconnection over the most used technique to 

characterize porous solids: adsorption of gasses. During the 1950s, 1960s and 1970s the study of adsorptive 

properties in cylindrical pores yielded valuable insights into interpreting adsorption isotherms. Examples 

include the Barrett-Joyner-Halenda (BJH) method [17], which was widely used for determining PSD; the 

Broekhoff de Boer description [18], and the studies conducted by Everett and Haynes [19] that delved into the 

intricate processes of capillary condensation and evaporation of gases that have been adsorbed. 

Another significant approach during those days was the development of porous network models. These 

models aimed to capture the interconnected nature of pore elements using lattices with different geometries. 

Within such lattices, two key elements are distinguished: sites and bonds. Sites represent points where two or 

more bonds converge, while bonds are passages connecting two neighbouring sites. Another important 

characteristic of lattice geometry is the coordination number or connectivity (C), denoting the number of bonds 

connecting two neighbouring sites. Typically, the connectivity remains constant within each  different lattice. 

In this way, a 3D-lattice can be envisioned as an integrated network of sites and bonds interconnected 

throughout a volume. Examples of such lattices include the simple cubic lattice (C=6), the body-centered cubic 

lattice (C=8), and the face-centered cubic lattice (C=12). 

By associating sites and bonds with different geometries and sizes, researchers can simulate, besides 

adsorption, irreversible transport processes in porous media, such as fluid displacement and diffusion of gases 

and solutions, which remain active fields of research nowadays [20-22]. However, reversible or steady-state 

processes, such as gas adsorption, represents a formidable challenge. At each equilibrium state, these processes 

involve an interplay between the geometry of statically confined fluids and the physical attraction between the 

porous solid walls and the adsorbed gas. Moreover, a confined fluid is not a homogenous phase, since the 

density of the adsorbed fluid varies as a function of the distance from the solid wall. Nevertheless, in the 1970s, 

1980s, and early 1990s, several authors conducted ingenious studies combining simple thermodynamic 

equations of homogeneous phases and percolation theory applied to porous networks [18-20]. These studies 

aimed to elucidate the relationship between pore element interconnection, shape, and gas adsorption 

development. Additionally, methods were developed to calculate the connectivity of porous networks [26]. 

These methods validated the importance of porous networks as a useful model for interpreting and predicting 

the shape of adsorbed gas isotherms. During this period, the Academic Area of Physicochemical of Surfaces 
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(AAPS) developed porous networks embodied with correlation, which are described in detail below. 

Henceforth, the acronym AAPS will be used. 

 

Dual Site-Bond Model (DSBM)  

 
During the 1980s, the AAPS proposed the Dual Site-Bond Model (DSBM) to describe porous materials 

with internal structures formed by porous networks composed of interconnected pores and channels, such as 

Vycor glasses and silica gels [4]. These amorphous materials can be characterized by lattices composed of 

interconnected sites and bonds. The starting point of the DSBM begins by addressing the relationship between 

the sizes of interconnected elements that form a porous network. Defining the size of a pore network material 

is an ambiguous concept. The DSBM resolves this by defining the size of a pore cavity (site) as the radius RS 

of the largest sphere that could be accommodated within the cavity. Similarly, the size of a bond is defined as 

the radius RB of the largest cylinder that could fit inside the pore channel connecting two sites, or as the radius 

of the largest circle that would be accommodated inside the pore window connecting two pore cavities. Since a 

site is a pore element where C-bonds converge, its size must be sufficient to accommodate these bonds. 

Conversely, since a bond is a channel or a window connecting two sites, its size must be smaller or equal to 

either of the sites it connects. This leads to the Construction Principle (CP): “the size of any site must always 

be bigger or at least equal to the size of any of its C-bonds”. See Fig. 1 for a schematic representation.  

  

 
Fig. 1. Schematization of sites and bonds forming a porous network with square geometry. The CP is depicted, 

showing that the size of any site is always bigger or at least equal to the size of any of its C-bonds. 

 

 

 

Two equations ensure the fulfillment of the CP throughout pore networks, given by, 

 

𝐵(𝑅) ≥ 𝑆(𝑅) (1) 

  

𝜙(𝑅𝑆, 𝑅𝐵) = 0, ∀𝑅𝑆 < 𝑅𝐵 (2) 
 

where 𝐵(𝑅) and 𝑆(𝑅) are the fractions of bonds and sites of sizes 𝑅𝐵 or 𝑅𝑆 smaller or equal to the value R, 

respectively. Thus, they are defined as the integral of the normalized size probability density functions of sites, 

𝐹𝑆(𝑅𝑆) and bonds, 𝐹𝐵(𝑅𝐵), as follows, 
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𝐵(𝑅) = ∫ 𝐹𝐵(𝑅𝐵)𝑑𝑅
𝑅

0

 (3) 

  

𝑆(𝑅) = ∫ 𝐹𝑆(𝑅𝑆)𝑑𝑅
𝑅

0

 (4) 

 

Additionally, in Eq. (2) the function 𝜙(𝑅𝑆, 𝑅𝐵) is a correlation function that restricts the joint 

probability, 𝐹(𝑅𝑆, 𝑅𝐵), of finding a site of size 𝑅𝑆 ∈ (𝑅𝑆, 𝑅𝑆 + 𝑑𝑅𝑆) connected to any of its C-bonds of size 

𝑅𝐵 ∈ (𝑅𝐵, 𝑅𝐵 + 𝑑𝑅𝐵) in the following way, 

 

𝐹(𝑅𝑆, 𝑅𝐵) = 𝐹𝑆(𝑅𝑆)𝐹𝐵(𝑅𝐵)𝜙(𝑅𝑆, 𝑅𝐵)𝑑𝑅𝑆𝑑𝑅𝐵 (5) 
 

 

where 𝜙(𝑅𝑆, 𝑅𝐵) must satisfy the restriction given by Eq. (2). Then, according to Eq. (5), the joint probability, 

𝐹(𝑅𝑆, 𝑅𝐵), becomes equal to zero for  𝑅𝐵 > 𝑅𝑆. The expression of  𝜙(𝑅𝑆, 𝑅𝐵) meeting this latter condition is [27], 

 

𝜙(𝑅𝑆, 𝑅𝐵) =
𝑒𝑥𝑝 (−∫

𝑑𝑆
𝐵(𝑅) − 𝑆(𝑅)

𝑅𝑆
𝑅𝐵

)

𝐵(𝑅𝑆) − 𝑆(𝑅𝑆)
 

 (6) 

 

The Eq. (1), often referred to in the literature as the first law of the DSBM, specifies how the functions 

𝐹𝐵(𝑅𝐵) and 𝐹𝑆(𝑅𝑆) are defined to ensure an adequate quantity of C-bonds connected to any site in the pore 

network. Fig. 2 displays the values of 𝐵(𝑅) and 𝑆(𝑅) corresponding to three different pairs of the functions 𝐹𝐵 

and 𝐹𝑆; condition 𝐵(𝑅′) ≥ 𝑆(𝑅′), ∀𝑅′ is always met for values of R’>0. Additionally, the normalized overlap, 𝛺, 

between functions 𝐹𝐵 and 𝐹𝑆 is presented; note how 𝛺 = 0 in the graphic depicted on the left; 𝛺 = 1/3 (indicated 

by the red area) for the case in the middle, and 𝛺 = 1 (total overlap between 𝐹𝐵 and 𝐹𝑆) in the rightmost case. 

 

 
Fig. 2. Illustration of the first law of the DSBM. Each of the uniform distribution functions 𝐹𝑆 and 𝐹𝐵 satisfy 

the condition 𝐵(𝑅′) ≥ 𝑆(𝑅′), ∀𝑅′. The values of B and S corresponds the shaded areas. b1 (bonds) and s1 (sites) 

denote the sizes of the smallest pore elements, whereas b2 (bonds) and s2 (sites) correspond to the sizes of the 

largest pore elements. Parameter 𝛺 represents the normalized area of overlap between 𝐹𝐵 and 𝐹𝑆. 

 

 

 

On the other hand, Eq. (2), commonly referred to in the literature as the second law of the DSBM, 

imposes local constraints on connected sites and bonds in order to satisfy the CP. The value of  𝜙(𝑅𝑆, 𝑅𝐵) 

depends on the value of 𝛺 .When 𝛺 = 0, 𝜙(𝑅𝑆, 𝑅𝐵) always equals 1, as any bond from 𝐹𝐵(𝑅𝐵) can be connected 

to any site with size 𝑅𝑆  without violating the CP. However, for 0 < 𝛺 ≤ 1, the value of of 𝜙(𝑅𝑆, 𝑅𝐵) depends 
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on the specific interval where 𝑅𝐵 and 𝑅𝑆 are located. Fig. 3 illustrates different values of 𝜙(𝑅𝑆, 𝑅𝐵) shown in 

equation (7), for uniform density distribution functions, resulting from different values of  𝛺 [23-26]. 

 

𝜙(𝑅𝑆, 𝑅𝐵) =
𝑒𝑥𝑝 (−∫

𝑑𝑆
𝐵(𝑅) − 𝑆(𝑅)

𝑅𝑆
𝑅𝐵

)

𝐵(𝑅𝑆) − 𝑆(𝑅𝑆)
 

 

where 

𝛽(𝑅𝑆, 𝑅𝐵) =

{
 

 
(𝑅𝑠 − 𝑠1) (𝑏2 − 𝑠1)  ⁄ 𝑖𝑓 𝑅𝐵 ≤ 𝑠1 𝑎𝑛𝑑 𝑅𝑆 ≤ 𝑏2 (𝐼)

1 𝑖𝑓 𝑅𝐵 ≤ 𝑠1 𝑎𝑛𝑑 𝑅𝑆 > 𝑏2 (𝐼𝐼)

(𝑅𝑠 − 𝑅𝐵) (𝑏2 − 𝑏1)  ⁄ 𝑖𝑓 𝑅𝐵 > 𝑠1 𝑎𝑛𝑑 𝑅𝑆 ≤ 𝑏2 (𝐼𝐼𝐼)

(𝑏2 − 𝑅𝐵) (𝑏2 − 𝑠1)  ⁄ 𝑖𝑓   𝑅𝐵 > 𝑠1 𝑎𝑛𝑑 𝑅𝑆 > 𝑏2 (𝐼𝑉)

 

 

 

 

 

 
Fig. 3. Different values of 𝜙(𝑅𝑆, 𝑅𝐵) for overlapped uniform distribution functions 𝐹𝐵 and 𝐹𝑆. Roman numbers 

indicate the expression in eq. (7). b1 (bonds) and s1 (sites) denote the sizes of the smallest pore elements, whereas 

b2 (bonds) and s2 (sites) correspond to the sizes of the largest pore elements 

 

 

 

Pore Size Segregation Effect 
 

One of the original contributions of the DSBM lies in its simple and systematic description of the size 

correlation among neighbouring pore components. Several methods for constructing porous networks have 

followed the principles of the DSBM [28-31]. However, the porous networks with the maximum randomness 

and isotropy among neighbouring sites and bonds can be constructed using the method find in [29] which is 

I II 

III IV 
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referred as the Pure MC method, inspired by the Monte Carlo sampling method of the NVT ensemble. This 

method involves randomly assigning sizes 𝑅𝐵 and 𝑅𝑆 from fixed functions 𝐹𝐵(𝑅𝐵) and 𝐹𝑆(𝑅𝑆), respectively, to 

bonds and sites of a given lattice. Subsequently, one Monte Carlo step is carried out executing 𝑁 transitions 

(where 𝑁 is equal to the total number of sites and bonds of the porous network). These transitions involve the 

interchange of sizes of two randomly chosen sites or two randomly chosen bonds in the lattice, according to the 

associated transition probabilities defined by the Metropolis algorithm [32,33]. The Monte Carlo steps are 

repeated until all the sites of the pore network satisfy the CP. The topology of pore networks obtained with this 

construction method is depicted in Fig. 4 [34], where three porous networks with C = 4 and different values are 

presented. In this figure, three sizes of sites are presented: small, medium, and large; the intervals of 𝑅𝑆, match 

these classifications by equalizing three areas below 𝐹𝑆. This figure illustrates two extreme cases and one that 

lies midway between them. The first extreme case corresponds to porous networks with 𝛺 → 0 (see Fig. 4(a)); 

in this case, the size of the three domains formed with sites of similar sizes is quite small, and they are spatially 

distributed at random.  The intermediate case is depicted in Fig. 4(b), where  𝛺 ≈ 0.7; the three domains possess 

a size that is neither too large nor too small, but rather intermediate. Finally, the second extreme case is 

represented for the condition 𝛺 → 1, (see Fig. 4(c)); in this instance, the domains have a large size and are 

distributed evenly in all directions. 

 

 
Fig. 4. Illustration depicting the spatial arrangement of domains within square porous networks, where each 

domain consists of sites of comparable size. The networks are characterized by 𝐶 = 4 and a length of 100 nodes. 

Every pixel corresponds to a single site. Panel (a) 𝛺 = 0.31, panel (b) 𝛺 = 0.68, and panel (c) 𝛺 = 0.92. Sites 

of small, medium, and large sizes are represented by the colors green, red, and yellow, respectively. 

 

 

 

Domains with uniformly sized sites can be described using a correlation length, which quantifies the 

size of regions within a porous network where the sites are strongly interrelated. This quantity is linked to the 

correlation function C(r), which represents the relationship of site sizes in the vicinity of surrounding locations 

and is defined as follows, 

 

𝐶(𝑟) =
⟨(𝑅𝑖 − 𝑅𝑆)(𝑅𝑗 − 𝑅𝑆)⟩

[〈(𝑅𝑖 − 𝑅𝑆)〉2 〈(𝑅𝑗 − 𝑅𝑆)〉2]
1
2⁄
 (8) 

 

where 𝑅𝑖 and 𝑅𝑗 are two sites separated by 𝑟 lattice positions, and  𝑅𝑆 is the medium size of 𝑅𝑆. Then, if 𝑟 = 1, 𝑅𝑖 

and 𝑅𝑗 are connected to the same bond. The relation between the correlation length 𝜉 and C(r), goes as, [35,36] 

 

𝐶(𝑟) = 𝑒𝑥𝑝 (−
𝑟

𝜉
) (9) 

(a) (b) (c) 
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Fig. 5 presents a graph of 𝜉, as a function of 𝛺 calculated through Eq. (9) for pore networks with C = 

4 and different values of  𝛺. This figure suggests two things. First, the size of the domains with sites of similar 

sizes have a typical value of 𝜉 → 0 for 𝛺 → 0, 𝜉 → 3 for 𝛺 ≈ 0.7, and 𝜉 → ∞, for 𝛺 → 1. A comparative 

analysis of Figs. 4 and 5 can be insightful for understanding the relationship between the values of 𝜉 and the 

dimensions of the domains, especially considering the nearly identical sizes of the sites involved. And second, 

𝜉 is a function of 𝛺. The variation of 𝜉 in relation to 𝛺 can be interpreted physically in the following manner. 

Pore cavities of comparable dimensions aggregate into domains, the size of which changes in direct proportion 

to the Ω value. This grouping of pores into domains based on size allows for a structured categorization, 

reflecting the influence of Ω on the spatial distribution within the material. 

 

 
Fig. 5. Representation of the correlation length 𝜉 as a function of 𝛺 for pore networks with 𝐶 = 4 and uniform 

distribution functions 𝐹𝐵 and 𝐹𝑆 [37]. 

 

 

 

Refinements of the DSBM 

 
The DSBM, as outlined previously, is inadequate for characterizing the internal structure of materials 

lacking a porous network texture. This model does not account for the complexities of materials without such 

geometries, such as MCM-41 or SBA-15 materials, which are characterized by their pores arranged in a 

hexagonal cylindrical array. In the context of the DSBM framework, the model was enhanced by two key 

modifications: the inclusion of spatial interference between bonds and the introduction of variable connectivity. 

 

 

Geometric interference of bonds 

 
The early 1990s witnessed the advent of advanced materials such as MCM-41, SBA-15, and SBA-16, 

among others, signifying a significant development in the field of material sciences. [4]. These solid materials 

feature organized structures, which facilitates the accurate determination of pore sizes. The DSBM sought to 

describe structured materials by integrating suitable enhancements, maintaining its straightforwardness. This 

involved examining the alterations in the texture of porous networks that occur when the geometric interference 

of bonds converging at a single site is prevented [38]. Fig. 6 illustrates this concept.  
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Fig. 6. Geometrical interference of four bonds converging the same site. Panel (a), the sizes of the bonds are 

sufficiently large to cause mutual interference. Panel (b), the sizes of the bonds are sufficiently minimal to 

prevent any mutual interference. 

 

 

 

This last figure shows two scenarios involving four bonds connected to a single site on a square 

lattice. In Fig. 6(a), geometrical interference occurs among the bonds, with the four bonds of equivalent size 

as the site itself. As a result, the site losses its circular geometry. Fig. 6(b), illustrates four bonds converging 

the same site without overlapping. This last configuration maintains the site circular shape of the site and 

ensures that the bonds do not obstruct one another. Then, if the sites of the networks have to keep its cavity 

geometry, the elements of the pore network have to be linked with a CP different than previously defined. It 

should be noted that geometric interference may not be applicable to all porous materials being studied. The 

significance of these limitations can vary depending on the specific characteristics and applications of the 

material in question. Therefore, it is essential to evaluate the relevance of geometric restrictions on a case -

by-case basis. For instance, the pores in plate-like materials do not interfere with each other; in this case the 

Hele-Shaw cells (spaces between rugged-parallel plates) [39] would describe much better the proper linkage 

among pores. Graphically, the size of any pair of bonds orthogonally connected to one site of size 𝑅𝑆 on a 

square lattice, and subjected to geometrical restrictions, must fall within the area bounded by a circle of 

radius 𝑅𝑆 and two perpendicular axis intersecting at the center of the circle, as depicted in Fig. 7. This area 

is defined as the incumbent volume of a site of size 𝑅𝑆 when connected to two perpendicular bonds of sizes 

𝑅𝐵1 and 𝑅𝐵2. 

 

 
Fig. 7. Permitted sizes of two bonds orthogonally connected to one site. Any point located in the red area 

(incumbent volume of the site  𝑅𝑆) do not interfere with each other. 

 

 

(a) (b) 
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The updating of the firs law that guarantee the fulfilment of geometric restrictions among the 

components of a porous network, is as follows, 

 

𝐵𝐶(𝑅𝑆) ≥ 𝑆(𝑅𝑆), ∀𝑅𝑆 (10) 
 

where 𝐵𝐶(𝑅𝑆) represents the fraction of bonds of size 𝑅𝑆 or smaller that lie in the incumbent volume of sites 

smaller than or equal to 𝑅𝑆. The general expression for 𝐵𝐶(𝑅𝑆) can be articulated through the following equation 

(the integral boundaries are defined according to the type of lattice involved.) [40], 

 

𝐵𝐶(𝑅𝑆) = {∫ ⋯∫ 𝐹𝐵(𝑅𝐵1)⋯
⬚

0

𝑅𝑆

0

𝐹𝐵(𝑅𝐵𝐶)𝑑𝑅𝐵1⋯𝑑𝑅𝐵𝐶}

1 𝐶⁄

 (11) 

 

where  𝑅𝐵1 , 𝑅𝐵2 … 𝑅𝐵𝐶 are the sizes of the C-connected bonds of sites of sizes 𝑅𝑆  and 𝐹𝐵(𝑅𝐵1)⋯𝐹𝐵(𝑅𝐵𝐶) are 

the corresponding density functions of these bonds. For their part, the probability density function for the joint 

event of having a site of size 𝑅𝑆 connected to bonds of sizes 𝑅𝐵1⋯𝑅𝐵𝐶 , is represented as follows,  

 

𝜌(𝑅𝑆 ∩ 𝑅𝐵1⋯𝑅𝐵𝐶) = 𝐹𝑆(𝑅𝑆)𝐹𝐵(𝑅𝐵1)⋯𝐹𝐵(𝑅𝐵𝐶)𝜙(𝑅𝑆, 𝑅𝐵1⋯𝑅𝐵𝐶) (12) 

 

Then, the updating of the second law can be written as, 

 

𝜙(𝑅𝑆, 𝑅𝐵1⋯𝑅𝐵𝐶) = 0, outside the incumbent volume (13) 

 

where the expression of the correlation function changes as follows [40],  

 

𝜙(𝑅𝑆, 𝑅𝐵1⋯𝑅𝐵𝐶) =
𝑒𝑥𝑝 (−∫

𝑑𝐵𝐶
𝐵𝐶 − 𝑆

𝐵𝐶(𝑅𝑆)

𝐵𝐶(𝑅𝐶)
)

𝐵𝐶(𝑅𝐶) − 𝑆(𝑅𝐶)
 

(14) 

 

where 𝑅𝑐 is the minimal size of a site that accommodates the precise set of 𝑅𝐵1⋯𝑅𝐵𝐶bonds without geometric 

interference. The revised version of the CP is presented as follows: “While every bond converging into a site 

must be smaller in size than this last cavity, a pair of adjacent bonds converging to the site have still to assume 

the right combination of sizes to prevent any physical interference between them before meeting together into 

the site” [38,42]. 

 

 

Variable connectivity 

 
To integrate variable connectivity one can introduce the notion of “virtual (closed) bonds” within a 

porous network that maintains a constant connectivity 𝐶𝑚 [38, 41]. Refer to Fig. 8, which illustrates the sites of 

a square network with  𝐶𝑚 = 4, connected to “virtual bonds”. 
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Fig. 8. Representation of the concept of virtual or closed bonds of sites of a square network with 𝐶 = 4. The 

solid phase is represented in brown color.  

 

 

 

Physically, “virtual bonds” represent the solid phase; mathematically, their size corresponds to 𝑅𝐵 =

0. Then, the local connectivity of any i-site (𝐶𝑖) is given by, 

 

𝐶𝑖 = 𝐶𝑚 − 𝐶𝑖,0, ∀𝑖 (15) 
 

where 𝐶𝑖,0 is the number of virtual bonds of the i-site. If the average of 𝐶𝑖 is calculated in the last equation, the 

average connectivity of the porous network (𝐶) is obtained,  

 

𝐶 = 𝐶𝑚(1 − 𝑓0) (16) 

 

where 𝑓0 stands for the fraction of closed bonds in the porous network. Taking into account the definition of 

closed bonds, 𝐹𝐵 is redefined as follows, 

 

𝐹𝐵(𝑅𝐵) = {
𝑓0, for 𝑅𝐵 = 0

𝐹´𝐵(𝑅𝐵), for 𝑅𝐵 > 0
 (17) 

 

This last definition for 𝐹𝐵 makes Eqs. (1)-(6) still valid. The following normalization condition holds, 

 

∫ 𝐹´𝐵(𝑅𝐵)𝑑𝑅𝐵 = 1 − 𝑓0

∞

0

 (18) 

 

Fig. 9 shows the graphical representation of 𝐹𝐵 and 𝐹𝑆 for porous networks with variable connectivity. 
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Fig. 9. Representation of the density functions 𝐹𝐵 and 𝐹𝑆  for porous networks with variable connectivity. 
 

 

 

Correlated Networks with geometric restrictions and variable connectivity 
 

The interplay of variable connectivity and geometric restriction of bonds results in the formation of 

porous networks exhibiting simultaneous segregation based on size and connectivity when the density functions 

FB and FS overlap [42]. Throughout the 2010s, the AAPS introduced a variety of advanced computational 

techniques for the development of porous network structures. These innovative methods have significantly 

contributed to the field, offering new insights and approaches to the construction of these complex systems 

[30,38, 43 - 45]. Refer to Fig. 10 to observe the simultaneous effects of size and connectivity segregation. This 

figure presents visual representations of central sections of porous networks with 𝐶 = 4 and different values of 

𝜉(0.94,3.0,9.0); it is organized into two columns. The top row displays central planes representing the spatial 

distribution of sites in three sizes: small, medium, and large. The bottom row shows color-coded central 

sections, which illustrate the spatial arrangement of site connectivity. In the image, orange pixels represent sites 

where  𝐶𝑖 = 1,2. Sites with 𝐶𝑖 = 3,4 are indicated by blue pixels. Finally, gray pixels denote sites with 𝐶𝑖 =

5,6. Each column in this figure corresponds to the same porous network: the first column, from left to right, 

corresponds to 𝜉 = 0.94; the second column to 𝜉 = 3.0; and the third column to 𝜉 = 9.0. 
 

 

 

Fig. 10. Schematization of the spatial distribution of the connectivity and sizes of sites on cubic porous networks with  𝐶 =

4 and a length of 100 nodes. (a), (d) 𝜉 = 0.94. (b), (e) 𝜉 = 3.0. (c), (f) 𝜉 = 9.0. Top row represents sizes of sites: green 

(small), red (medium), yellow(large). Bottom row stands for local connectivity of sites: orange 𝐶𝑖 = 1,2. Blue 𝐶𝑖 = 3,4. 

Gray 𝐶𝑖 = 5,6. Each pixel represents one site. Each image corresponds to middle planes of cubic porous networks. 

(a) (c) 

(d) (f) (e) 

(b) 
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Fig. 10 is described as follows. As 𝜉 → 0, the sizes and local connectivity of sites become randomly 

assorted throughout the space; see Figs. 10(a) and 10(d). This situation corresponds to distributions 𝐹𝐵 and 𝐹𝑆 

being sufficiently separated on a graph, allowing every site within 𝐹𝑆 to accommodate any combination of 

𝑅𝐵1⋯𝑅𝐵𝐶 bonds without any geometric interference. Yet, when 𝜉 > 1, the sizes of adjacent sites become 

increasingly alike, leading to the formation of distinctive domains with a typical size 𝜉, as illustrated in Fig. 

10(b). This phenomenon is completely equivalent to what has been outlined in preceding sections. However, 

the novel aspect highlighted is the effect of connectivity segregation, as depicted in Fig. 10(e). This phenomenon 

involves the clustering of sites that share comparable values of local connectivity. In Fig. 10(e), adjacent sites 

are spatially organized based on their Ci values. The sites with Ci values of 5 and 6, those with 3 and 4, and 

those with 1 and 2, are each clustered into separate, cohesive domains. These domains are visually differentiated 

by gray, blue, and orange colors, respectively. When the parameter ξ significantly exceeds 1, the structure of 

the porous networks transitions into configurations predominantly characterized by two major connectivity 

domains. Specifically, one domain exhibits local connectivity Ci of either 1 or 2, whereas the other domain is 

distinguished by higher Ci values to 5 or 6, as depicted in Fig. 10(f). These domains are separated by a dispersed 

interface composed of sites with Ci 3 or 4. The observed phenomenon arises from the distributions of FB and 

FS, particularly when the variable ξ attains its peak value in relation to the network's average connectivity. 

Geometric interference indicates that the best approach is to connect the smallest feasible site capable of 

supporting a sequence of bonds RB1…RBC of the largest dimensions, thereby achieving a local connectivity of 

Ci=5 or 6. In contrast, larger sites should be linked to bonds of similar size. This approach is practical when 

these bonds are classified by FB as large and the sites demonstrate a local connectivity of Ci=1 or 2, with their 

respective Ci-bonds situated on directly opposite sides of the site. To complement Fig. 10, Fig. 11 presents 

drawings of the domains. These domains in Fig. 11 are characterized by alternating sites of high and low local 

connectivity, providing a visual representation of the spatial distribution of connectivity values within the 

domain. This illustration highlights the contrast and interplay between regions of differing connectivity levels. 

 

 

Fig. 11. Cubic networks with a high correlation are structured into regions measuring 5x5x5. (a)  𝐶 = 6. (b) 

𝐶 = 4. (c) 𝐶 = 2. Colors are utilized to create a contrast. 

 

 

 

Interpretation of N2 isotherms through correlated Porous Networks 

 

Assumptions 

The straightforward geometry of porous networks enables a useful qualitative analysis of the shape of 

the boundary curves (both ascending and descending) and the Primary Ascending and Descending Scanning 

Curves of N2 isotherms, based on the sizes, geometry, and interconnection among porous entities. The pore 

(a) (b) (c) 
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volume of sites and bonds can be controlled by establishing a suitable distance from the node (center of each 

site) to the node of the porous network. To obtain N2 isotherms, the following rough assumptions are made for 

the adsorption processes (whether boundary or primary ascending curve). 

I. During adsorption, as the pressure of the adsorbing gas increases, an adsorbed layer, denoted by 

thickness t, progressively forms on the surface of sites and bonds. The value of t can be calculated 

using a suitable equation, such as the Halsey-type equation [46]. 

II. The adsorbed layer on each site and bond reaches a limit value at a certain pressure, imposed by the 

balance between the mechanical equilibrium of the adsorbed phase and the physical attraction of the 

pore walls. The classical Kelvin equation provides a corresponding radius of curvature, 𝑅𝐶, that 

defines the porous elements ready to condensate, written as, 

 

𝑅𝐶 =
2𝜎𝑙𝑣𝑣𝑙

𝑅𝑔𝑇𝑙𝑛(𝑝 𝑝0⁄ )
 (19) 

 

where 𝑅𝑔 is the gas constant, 𝑇 is the absolute temperature, 𝜎𝑙𝑣 is the interfacial tension between liquid and 

vapor phases,  𝑝 is the gas bulk pressure, 𝑝0 is the saturation pressure defined by 𝑇, and 𝑣𝑙  is the molar volume 

of the liquid phase of the adsorptive. 

III. The condition for the onset of capillary condensation is given by (𝑅𝐵 − 𝑡) ≤ 𝑅𝐶 2⁄ . However, if at 

least one of its two neighboring sites of the bonds is already filled with condensate, they acquire a 

hemispherical interface at one of its ends. This could trigger the advancement of the meniscus to the 

other end of the bond if it also fulfills the condition 𝑅𝐶 2⁄ ≤ (𝑅𝐵 − 𝑡) ≤ 𝑅𝐶 . This latter mechanism of 

condensation is a cooperative effect known as advanced adsorption [47]  

IV. As for sites, they develop a continuous hemispherical liquid-vapor interface if either all of their C 

bonds or at least C-1 bonds are already occupied with condensate. Then, if this condition is satisfied, 

and also (𝑅𝑆 − 𝑡) ≤ 𝑅𝐶, the sites are immediately occupied by condensate. On the other hand, the 

following suppositions are assumed for the desorption processes (either boundary or primary 

descending curve). 

V. Occupied pores (sites or bonds) with condensate can evaporate if they have reached the condition 𝑅𝐵 ≥

𝑅𝐶 or 𝑅𝑆 ≥ 𝑅𝐶, and if there exists a liquid-vapor interface at their junctions that promotes the 

development of evaporation of the pore entity. The latter condition is met if exists a pathway from the 

evaporating pore to the bulk vapor phase (for the boundary descending curve) or at least one of its 

connected pores have not been filled with condensate (primary descending curve). Thus, desorption is 

controlled by the classical pore-blocking effect [48,49] and the percolation phenomenon. 

VI. Once a pore entity is emptied, as the pressure steadily declines, the thickness of the adsorbed layer 

correspondingly diminishes. 

 

It is important to note that the suppositions outlined above do not allow for an accurate assessment of 

the shape of the isotherms. Detailed molecular simulation methods have shown that the form of the isotherms 

is influenced by the trajectory over a landscape of metastable states of the thermodynamic potential, which is 

influenced by the detailed molecular configurations of the adsorbed gas molecules and the microscopic 

characteristics of the surface of the pore walls [50].  

Consequently, these suppositions are not capable of describing phenomena such as cavitation, which 

results from molecular fluctuations of the adsorbed phase [51,52]. Nevertheless, the N2 isotherms of networks 

constructed under the framework of the DSBM have proven to be a very useful tool, providing a simple 

framework for qualitatively interpreting the appearances of boundary curves (ascending or descending) and 

primary scanning curves (ascending or descending) [53]. This is described next. 

Figs. 12 and 13 provide a summary of poorly correlated and highly correlated N2 isotherms at 77 K, 

depicting porous networks with diverse mean connectivity values. It is evident from these figures that the 
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appearance of the boundary curves cannot be strictly classified as types H1, H2, or H3 of the original IUPAC 

classification of sorption hysteresis loops [48], although they exhibit hybrid shapes with different degrees of 

these IUPAC types, depicted in Fig.14. In broad terms, networks with 𝛺 = 0 (left columns of Figs. 12 and 13) 

are typically associated with H1 loops, though a transition to H2 types occurs if the volume of bonds 

significantly exceeds the volume of sites [53]. In contrast, highly correlated porous networks (right columns of 

Figs. 12 and 13) yield cycles with sloping ascending and descending boundary curves, representing hybrids 

between H1 and H3 loops. 

 

 
Fig. 12. Simulated nitrogen sorption isotherms at 77 K on porous networks. In this figure, 𝜃𝑣 represents the 

degree of filling of the porous network with adsorbate, while 𝑝 represents the gas bulk pressure, and 𝑝0 is the 

saturation pressure. The adsorption hysteresis loops are organized according to 𝐶 and 𝛺. Sets of primary 

descending curves are included. Reproduced from [53] with permission from the Royal Society of Chemistry. 
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Fig. 13. Simulated nitrogen sorption isotherms at 77 K on porous networks. In this figure, 𝜃𝑣 represents the 

degree of filling of the porous network with adsorbate, while 𝑝 represents the gas bulk pressure, and 𝑝0 is the 

saturation pressure. The adsorption hysteresis loops are organized according to 𝐶 and 𝛺. Sets of primary 

ascending curves are included. Reproduced from [53] with permission from the Royal Society of Chemistry. 

 

 

 

 
Fig. 14. Diagrammatic illustration of the original IUPAC categorization for sorption hysteresis loops [48]. 
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Adsorption and desorption in poorly correlated (Ω=0) porous networks 

 
In order to understand the shapes of the boundary curves of the isotherms in Figs. 12 and 13, the 

concept of multiplex (independent domain) must be introduced. A multiplex is a unit cell consisting of a site 

and its C-half bonds (half, because one bond is shared with two sites). See Fig. 15. This multiplex can 

condensate and evaporate without networking effects, because it is assumed that each one maintains immediate 

contact with the bulk phase of the adsorbing gas. If the algorithm to simulate N2 adsorption, described in the 

previous section, is applied to the set of multiplexes that comprise each porous network in Figs. 12 and 13, we 

obtain the set of isotherms presented in Fig. 16. 

  

 
Fig. 15. (a) Visual representation of a porous network, and (b) the concept of multiplex. 

 

 

 

From the last figure, it is observed that the ascending boundary curves of poorly correlated networks 

(left column of Fig. 13) practically coincides with those of the multiplex´s isotherms in Fig. 16 (left column). 

However, the descending boundary curves of these uncorrelated porous networks differ considerably from those 

of the multiplexes. The coincidence of the ascending boundary curves of networks and multiplexes can be 

explained by the significant difference in sizes between connected sites and each of their C-bonds. This 

difference of sizes implies that the pressure required for filling the bonds is small enough compared to the 

pressure needed for the filling their connected sites. Consequently, when the sites are ready to be occupied with 

condensate at certain pressure, almost all of their connected bonds are already occupied with condensate. This 

suggests that for poorly correlated networks, it is possible to accurately calculate the pore size distribution of 

sites using the ascending boundary curves when the volume of sites is considerably greater than that of the 

bonds, or the pore size distribution of bonds when the volume of bonds is considerably greater than that of the 

bonds [53]. As for the descending boundary curves of poorly correlated networks, the great difference between 

the curves of networks and multiplexes can be entirely explained by percolating phenomenon. This phenomenon 

states that the position of the knee in the descending boundary curves is influenced by the value of the mean 

connectivity 𝐶 [54]. This is due to the almost random spatial distribution of sizes of bonds throughout each of 

the uncorrelated porous networks. Another consequence of this is the challenge in deducing the distribution of 

pore sizes among sites or bonds from the boundary desorption curves, given the concurrent occurrence of the 

classical pore blocking effect and the percolation phenomenon. 

 

(a) 
(b) 
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Fig. 16. Comparison of isotherms between porous networks and sorption curves obtained with multiplexes. 

Both structures possess the same pore-size distributions. Reproduced from [53] with permission from the Royal 

Society of Chemistry. 

 

 

 

Adsorption and desorption in highly correlated porous networks 

 
For highly correlated porous networks, the shapes of their loops are associated with hybrid types 

between the H1 and H3 classification (right columns of figures 12 and 13). To quantify the extent of cooperative 

effects during the course of the boundary curves, a comparison must be made with the isotherms of the 

independent domains (multiplexes) through Fig. 16 (right column). In this way, the cooperative effects due to 

the advancement of hemispherical meniscus through the ends of bonds increase as the mean connectivity, 𝐶 

decreases. While it is almost absent for porous network with 𝐶 = 6 (check out the coincidence between the 

ascending boundary curves of the network and the one of the multiplexes; Fig. 16, bottom right column), it is 

very strong for the porous network with 𝐶 = 2 (note the strong divergence between the ascending boundary 

curves between the porous network and that one of multiplexes; Fig. 16, top right column). The observed 

phenomenon can be attributed to the significant correlation between the sizes within the porous network and 

the average value of 𝐶, which is 2. This network comprises an array of elongated cylindrical capillaries, each 

featuring a variable cross-sectional area. The larger sections correspond to the sites, while the narrower sections 
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represent the bonds. These long capillaries are connected among them through the connection of sites with 𝐶 >

3, which act as manifold capillary distributors. Then, once a small enough bond (minimum of a cross-sectional 

area of a long capillary) fills independently with condensate, at its corresponding value of pressure, immediate 

condensation occurs in their two connected sites (given the similar size among them), which then triggers the 

advancement of the hemispherical meniscus throughout the whole structure of the long capillary. On the other 

hand, porous network with 𝐶 = 6 are composed of domains with sites with very similar sizes connected through 

bonds with also very similar sizes among them, but considerably smaller, due to the geometrical restriction, 

than those of the sites of the domain. This difference in size between 𝑅𝐵 and 𝑅𝑠 in each domain promotes the 

independent condensation of bonds and sites at each value of pressure during the course of the ascending 

boundary curve. Then for this porous network, the ascending boundary curve can be depicted as a succession 

of orderly of filling of independent domains according to the size of sites and bonds, from small pore domains 

at the beginning of the curve to large pore domains at the onset of the ascending boundary curve. The 

cooperative effects during the course of the ascending boundary curve for porous network with 𝐶 = 4 are 

intermediate between the cases for 𝐶 = 2 and 𝐶 = 6. 

The boundary curves delineating highly correlated porous networks exhibit a less pronounced descent 

compared to those of uncorrelated structures. Additionally, the knees of these curves appear at higher pressure 

values when contrasted with an uncorrelated porous network possessing an equivalent mean connectivity. This 

phenomenon can be elucidated by examining percolation in correlated lattices. Research indicates that an 

increase in the correlation length leads to a lower percolation threshold. Essentially, as the degree of correlation 

intensifies, it becomes easier for a network to reach a state of percolation, facilitating the process at a quicker 

rate [55, 56]. Then, the boundary descent curves of each porous network differ from the corresponding 

multiplex. This mismatch is significantly greater in the case of 𝐶 = 2 (Fig. 16, top right column), while it is 

moderate for 𝐶 = 4 ,(Fi. 16, middle right column) and nearly non-existent for 𝐶 = 6 (Fig. 16, bottom right 

column). The strong correlation observed between the network and multiplexes' isotherms, particularly in 

highly interconnected porous networks with an average connectivity of 6, indicates that assuming an accurate 

meniscus geometry can yield precise calculations of pore size distribution. This is crucial for analyzing the 

ascending or descending parts of boundary curves. Such insights are essential for characterizing and analyzing 

porosity and pore structures [53]. 

 

 

Primary ascending and descending scanning curves 

 
The primary ascending and descending scanning curves of the isotherms indicate the existence of pore 

domains that behave either independently or in a connected manner.  [56]. In this analysis, the primary scanning 

curves of the weakly correlated networks, as shown in the left columns of Figs. 12 and 13, tend to approach the 

lower (for descending scanning curves) or upper (for ascending scanning curves) endpoints of the corresponding 

hysteresis loop. This convergence suggests the existence of interconnected pore domain behaviour, specifically 

the pore blocking phenomenon. This description is also relevant for a highly correlated porous network where 

the average mean connectivity is 2. The isotherms in the top right of Figs. 12 and 13 illustrate this, as they are 

influenced by significant cooperative effects during adsorption and pore blocking phenomena during 

desorption. In turn, when examining the primary ascending and descending scanning curves of highly correlated 

structures, it is intriguing to note that for structures with intermediate and low medium connectivity, these curves 

tend to converge towards the boundary curve within a narrow pressure range. This merging is clearly observed 

in isotherms e and f, as illustrated in Figs. 12 and 13. These figures suggest a nearly flat line (𝐶 = 6) or a gently 

sloping curve (𝐶 = 4) intersecting the corresponding boundary curves. It is significant to recognize that the 

specific patterns of the primary descending scanning curves in a highly correlated porous network, characterized 
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by an average connectivity of 2, provided a framework for the AAPS to conduct experimental studies on the 

cooperative phenomena observed in undulated SBA-15 materials. [57]. 

 

 

Conclusions 

 
The Academic Area of Physicochemical Surfaces has significantly advanced the field by introducing 

the DSBM, a model that simplifies the understanding of porous materials' texture and their nitrogen sorption 

properties. Utilizing dual pore size distributions for sites and bonds, the DSBM aids in constructing a theoretical 

framework of porosity, connecting diverse porous structures. This model enables the analysis of porous 

topologies by examining the dimensions and interconnectivity of adjacent pore elements. Notably, the 

correlation length within the DSBM is crucial for identifying domains with similarly sized pores. As a tool, the 

DSBM is pivotal in deciphering complex patterns in sorption data, illuminating the spatial arrangement of pores 

and their connections within a solid matrix. This is achieved through qualitative examination of nitrogen 

adsorption curve shapes and their association with cooperative behaviors during adsorption and desorption 

processes. While fully characterizing a porous solid's texture from gas sorption remains elusive, the DSBM 

offers a comprehensive guide for interpreting experimental outcomes by qualitatively assessing the boundary 

curves and primary scanning curves. 
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