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Abstract. The present work describes a workflow for unsupervised Principal Component (PCA) and supervised 
Partial Least Squares Discriminant (PLS-DA) multivariate statistical analysis (MSA), to analyze Near Infrared 
(NIR) data matrixes of cheeses from diverse types and geographical origins, with respect to their NIR saturated 
fatty acid profile. The data set include (A) acquired NIR absorbance spectra, (B) post-processed first derivative 
NIR spans and (C) post-processed first derivative frequency-selected NIR spans, within a wavelength range of 
12500-3600 cm-1. NIR data inputs were adapted for the first time into a format suitable for the stream-lined 
metabolomics data analysis “MetaboAnalyst”, by converting spectrophotometer raw data format, into a 
JCAMP-DX IUPAC standard format family for spectral data exchange, in turn transformed into an editable 
comma-separated values (.csv) format, suitable for metabolomics studies with MetaboAnalyst. The 
discriminant regions for the first NIR data matrix were five. For the second matrix, discriminant wave-number 
regions were reduced to three: 10000 to 8000 cm-1 (-CH- overtone), 6000 to 5000 cm-1(-C=O- overtone) and 
5000 to 4000 cm-1 (-CH- band). Finally, for the third NIR matrix, refined discriminant regions were taken: 9700 
to 8265 (-CH- overtone), 6661 to 4655 cm-1 (-C=O- overtone) and from 4327 to 4000 cm-1 (-CH- band). The 
PLS-DA model obtained from the first derivative frequency-selected near-infrared spans data matrix showed 
the best score-plot classification between dairy samples and saturated fatty acid standards. Present results intend 
to introduce an approach for untargeted and qualitative NIR based metabolomics within a platform with more 
than 300,000 users to date.  
Keywords: Near infrared spectroscopy; NIR based metabolomics; cheeses; untargeted metabolomics; saturated 
fatty acid (SFA). 
 
Resumen. El presente describe un flujo de trabajo para realizar análisis estadísticos multivariados (MSA) no 
supervisados por análisis del componente principal (PCA) y supervisados por análisis discriminante por 
mínimos cuadrados parciales (PLS-DA), para analizar matrices de datos obtenidos por infrarrojo cercano (NIR) 
de quesos de diversos tipos y orígenes geográficos, con respecto a sus perfiles NIR de ácidos grasos saturados. 
El conjunto de datos incluye (A) espectros NIR adquiridos en modo absorbancia, (B) espectros NIR post-
procesados por primera derivada y (C) espectros NIR post-procesados por primera derivada y con frecuencias 
seleccionadas, dentro de un intervalo de longitud de onda entre 12500-3600 cm-1. La entrada de datos NIR fue 
adaptada por primera vez a un formato legible a la plataforma por internet de análisis metabolómicos 
“MetaboAnalyst”, convirtiendo el formato de datos espectrofotométricos sin procesar, al formato IUPAC 
JCAMP-DX estandarizado para intercambio de datos espectrales, transformados posteriormente hacia un 
formato de valores separados por comas editable (.csv) apropiado para estudios metabolómicos con 
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MetaboAnalyst. Las regiones discriminantes para la primera matriz de datos NIR son cinco. Para la segunda 
matriz, las regiones de número de onda discriminantes se reducen a tres: 10000 a 8000 cm-1 (sobretono -CH-), 
6000 a 5000 cm-1 (sobretono -C=O-) y 5000 a 4000 cm-1 (banda -CH-). Finalmente, para la tercer matriz NIR, 
se tomaron regiones discriminantes refinadas: 9700 a 8265 (sobretono -CH-), 6661 a 4655 cm-1 (sobretono -
C=O-) y de 4327 a 4000 cm-1 (banda -CH-). El modelo PLS-DA obtenido de la matriz de datos de barrido de 
infrarrojo cercano post-procesados por primera derivada y con frecuencias seleccionadas muestra la mejor 
clasificación entre los lácteos y los estándares de ácidos grasos saturados. Estos resultados pretenden introducir 
un método para realizar metabolómica basada en NIR no dirigida y cuantitativa dentro de una plataforma con 
más de 300000 usuarios al momento. 
Palabras clave: Espectroscopía por infrarrojo cercano; metabolómica basada en infrarrojo cercano; quesos; 
metabolómica no dirigida; ácidos grasos saturados.  

 
 
Introduction 
 

Metabolomics can be first divided into targeted and untargeted metabolomics. The choice of one of 
them depends on the objectives of the research, if it is desired to respectively have either the identification 
and/or quantification of specific compounds or obtaining representative holistic fingerprints, constructed from 
a metabolic signature of samples defined as complex matrixes, that provide in turn an overview of the expressed 
metabolites within a system [1]. The most commonly high resolution techniques used to obtain data for 
metabolomics studies are hyphenated chromatography with mass spectrometry and nuclear magnetic resonance 
spectroscopy [2]. The metabolomics workflow consists in obtaining a data matrix from an instrumental 
measurement, that after data processing (such as baseline corrections, both frequencies’ alignments and 
referencing as well as spectroscopic, spectrometric, or chromatographic binning), is suitable to multivariate 
statistical analysis (MSA). Untargeted metabolomics in food matrices comprises the obtention of holistic 
chemical foot and/or fingerprints related to their geographical origin, variety, food quality, manufacturing 
processes, impacts due to external factors such as climate change, counterfeits, amongst others [1,3,4].  

Multivariate analyses used in metabolomics studies are broadly based on Principal Component 
Analysis (PCA) [5] and Partial Least Squares Discriminant Analysis (PLS-DA) [6]. Principal component 
analysis is an unsupervised technique to produce decreased variable models with maximum variance [7,8], 
separating classes according to the weight of resulting loadings, wherein higher loading scores have a greater 
contribution to the separation [9]. In contrast, the supervised Partial Least Squares–Discriminant Analysis (PLS-
DA) extracts the information that can predict all possible class memberships from linear combinations of 
original input data matrix with the use of multivariate regression techniques, whereas class discriminations are 
assessed by a permutation test between the original data and the permuted class labels via cross-validations [10, 
4]. Finally, in terms of quantitative and qualitative metabolomics, the later can be subdivided into unsupervised 
and supervised pattern recognition methods, whereas supervised methods such as PLS-DA use trained 
algorithms for classifying samples from data inputs, into predefined groups. The supervised pattern recognition 
models also reveal variables related to separation amongst groups and how groups behave per analyzed 
discriminant factor [11]. Typically, cross-validation resampling methods are used in supervised pattern 
recognition algorithms for evaluating the predictive capacity of a trained independent data set, against new data 
with an optimum number of factors, by also flagging overestimations and/or biases. 

According to the Clarivate Web of Science database, more than 200 reports have been published the 
use of Near Infrared (NIR) spectroscopy for cheese analysis. These analyses, mainly driven as targeted 
strategies for identifying and quantifying specific treats in said dairy product, include [12]:  

- Gross composition: total weight percentage of fat, protein, salt, pH, Total Nitrogen (TN, in mg/g or g/ 
100g cheese), water soluble nitrogen (g/100g cheese), amino nitrogen with respect to TN  

- palm oil content (%wt/wt) 
- total antioxidant capacity (in µmol of Trolox / mg of cheese) 
-  cholesterol (g/ 100g of cheese). 
- % Volatile compounds: acetaldehyde, ethanol, 1-propanol, i-propanol, n-propanol, 2- butanol, 2-

pentanol, 3-methyl-1-butanol, 2-butanone, 2-pentanone, 2-heptanone, 2-nonanone, and acetone. 
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- Organic acids: acetoin (mmol/kg), acetic acid (mmol/kg), butyric acid (mmol/kg), pyruvic acid (g/kg), 
succinic acid (g/kg) and lactic acid (g/kg). 

- Free amino acid content (nmol/g) that are responsible of cheeses’ taste and also serving as ripening 
biomarkers. 

- Quality traits: Cheeses’ appearance, consistency and flavor. 
- Descriptive sensory analysis:  cheeses’ pressure and shear firmness, odor intensity, elasticity, cohesion, 

pastiness, solubility, dryness, floury, grainy, flavor intensity, aromaticity, maltiness, sweetness, 
acidity, pungency and bitterness. 
However, less than a tenth of said publications relate to the use of NIR based metabolomics or 

chemometrics for chesses. Most of said reports are coming from 15 countries, whereas at least half of them are 
coming from 3 European countries (Italy, France and Spain), and in turn being China the most active non-
European country that contribute to cheeses’ NIR based metabolomics. Up to date, to the best of our knowledge, 
no report exists regarding the use of NIR based metabolomics for studying Mexican cheeses’ assessments such 
as above-mentioned treats or models to describe geographical origin, quality, authenticity and/or counterfeiting.  

NIR metabolomics approaches for cheeses include a model for fingerprinting ageing processes and 
selected sensory parameters in Cheddars with reflectance NIR coupled with partial-least squares (PLS) 
multivariate regression of raw, derivatized and scatter-corrected NIR data matrix [13], the use of PCA and 
modified PLS [14] with cross-validation of raw NIR reflectance data matrix to evaluate diverse visual, taste, 
texture, flavors and odor attributes in Spanish cheeses [15], as well as a combined NIR Diffuse Reflection with 
Mid-infrared attenuated total reflection data matrix, treated with PCA and linear discriminant analysis (LDA) 
as chemometric model to discriminate Swiss, German, French (Bretagne and Savoie), Austrian and Finnish 
Emmental cheese. To the best of our knowledge, most of the herein mentioned references, do not extensively 
discuss the details for constructing discriminant infrared data matrices for (un)-supervised multivariate 
statistical analysis with pre- and post-processing outputs constructed in universal formats such as the Joint 
Committee on Atomic and Molecular Physical Data IUPAC standard format family for spectral data exchange, 
known as JCAMP-DX. 

The presence of saturated (SFA) or unsaturated fatty acids (UFA) within the raw milk will affect the 
texture of any produced cheese, whereas softer cheeses are related to a higher degree of unsaturation in fatty 
acids. In contrast, harder cheeses related to a major medium-sized SFA content are also associated with 
increased cardiovascular, obesity and some cancer risks, mostly due to the presence of C12:0 (lauric), C14:0 
(myristic) and C16:0 (palmitic) fatty acids, claimed as dangerous to human health in high contents [16]. Most 
common fatty acid in cheeses are C10:0 (capric acid), C14:0, C16:0, C18:0 (stearic acid), and C18:1 cis (oleic 
acid), whereas 60 to 70 % of total fatty acid content in ruminant milk is saturated, 20-30% correspond to 
monounsaturated fatty acids, and palmitic and oleic acids are the most abundant SFA and UFA, respectively in 
said dairy matrixes [17,18]. Furthermore, there are differences in medium chain SFA content in cow’s, goat’s 
and ewe’s milk, whereas goat’s and ewe’s milk present higher contents of mostly C12:0, C10:0 and C8:0, with 
respect cow’s milk, and thus its ratios in milk are measured as a counterfeit analytical test in goat products 
adulterated with cow’s dairy source [18]. Finally, as it has been demonstrated in previous works [19] , cheeses’ 
fatty acid profiles analyzed with NIR based chemometrics serve as a fingerprint for discriminating seasonal 
origin (winter or summer seasonality), whereas observed specific fatty acid contents varies along ruminants 
seasonal-dependent feeding regimen, that directly affects milk’s fatty acid profile [19,20].  

One of the most widely used techniques for the identification of fatty acids in dairy products is gas 
chromatography. However, its implementation carries on some challenges such as a proper selection of the 
derivatization method [21], as well as the optimization of classical chromatographic parameters related to the 
stationary phase such as selectivity for an accurate separation of relevant fatty acids [22], amongst others. In 
consequence, methods such as Near-Infrared (NIR) spectroscopy represent an excellent alternative in terms of 
easy implementation, as it does not require exhaustive or even null sample preparation, and furthermore, it is 
not invasive. With the NIR technique, it is straightforward to identify and even partially quantify saturated fatty 
acids which are present in cheeses in important amounts, in noticeable contrast to PUFAs that are more difficult 
to detect [23] with a non-invasive NIR analysis.  

Present work introduces a metabolomics approach to construct untargeted fatty acid profiles in a set of 
Mexican, American, and Italian regional cheeses, with three different data matrixes: i) NIR raw spectra, (ii) 
first derivative NIR span and (iii) first derivative-selected NIR spans absorbance data inputs, treated with 
unsupervised PCA and supervised PLS-DA algorithms, trained to compare cheeses’ fatty acid profiles with a 
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set of seven liquid- and solid-state fatty acid standards. Present model details the procedure to obtain three NIR 
absorbance data inputs, whereas the NIR acquisition raw data was exported from a local instrument format 
(Bruker OPUS: “.0” File format), into a universal JCAMP-DX format 
[https://www.cheminfo.org/Chemistry/Cheminformatics/JcampConverter/index.html], that allows to produce 
an editable comma-separated values (.csv) format of NIR matrixes, legible to be submitted to the stream-lined 
MetaboAnalyst 5.0 user-friendly multivariate statistical analysis platform, as an alternative way to obtain free 
access NIR metabolomics holistic fingerprints, avoiding the need of imperatively having costly metabolomics 
software.  

 
 
Materials and methods 

 
Cheeses and materials 

A total of twelve cheeses’ samples were purchased from different local markets, nine of which are 
Mexican artisan cheeses, two cheeses produced in the United States of America, and one produced in Italy. 
Seven artisanal samples from six Mexican geographical origins (Chiapas, San Luis Potosí, Oaxaca, Hidalgo, 
Jalisco and Estado de México) were obtained from Mercado de San Juan 19°25′48″ N, 99°8′40. 92″ W, located 
in Mexico City:  

I. Q1= Ocosingo Ball Cheese (Chiapas, Mexico), analyzing the composition of the crust (Q1A) and 
the cheese’s core (Q1B).  

II. Two cheeses with the local denomination “Queso Crema de Chiapas”, respectively: Q2= Santa 
Cruz® and Q3= Vaquero® (Chiapas, México).  

III. A cheese from San Luis Potosí, Mexico denominated and herein mentioned as Q4= Adobera 
cheese.  

IV. Q5= Quesillo de Oaxaca is an artisanal cheese with an origin from Oaxaca, Mexico.  
V. A cheese from the geographical origin Hidalgo, México, herein tagged as Q6= Oaxaca-type 

cheese.  
VI. Q7= Cotija cheese, from “El Mesón del queso Cotija ®” (Jalisco, Mexico)   

VII. Zacazonapan cheese with Q8=15 days ripening, and Q9=30 days of ripening (Estado de México). 
Cheeses produced in the United States of America were Q10=Cheddar cheese, Tillamook® and Q11= 

Camembert cheese, Président®. Finally, the Italian cheese provided by Kirkland® was herein tagged as Q12= 
Grana Padano cheese.  

Seven fatty acid standards were purchased from Sigma Aldrich® (Steinheim, Germany) S1=butyric 
acid (C4:0; CAS No. 107-92-6), S2=hexanoic acid (C6:0; CAS No. 142-62-1), S3=octanoic acid (C8: 0; CAS 
No. 124-07-2), S4=decanoic acid (C10:0; CAS No. 334-48-5), S5=dodecanoic acid (C12:0; CAS No. 143-07-7), 
S6=myristic acid (C14:0; CAS No. 544-63-8), S7=palmitic acid (C16:0; CAS No. 57-10-3). 
 
Near-Infrared absorbance acquisition details 

In all cases, one gram of grated cheese was placed in polystyrene integrating sphere sample rotator 
cups, adapted to the spectrophotometer for maximizing the interaction of the electromagnetic radiation with the 
inherent cheeses’ sample heterogeneity. NIR absorbance spans (NIR data matrix A, Figures 1 to 4) were carried 
out with a Multipurpose analyzer Bruker Optics spectrophotometer (Rosenheim, Germany) scanning 
wavelengths between 830 and 2500 nm (wavenumbers between 12000 to 4000 cm-1, respectively), spanning 
the radiation with a 2.5 nm optical pathlength. Acquisition routines were performed for all samples in 
absorbance mode with 64 scans for both blanks and sample collections. All acquisitions and data export to 
JCAMP-DX universal format were carried out using the OPUS 7.8 program (Bruker Optics, Rosenheim, 
Germany). Subsequently, all data were converted to a comma separated value format (CSV), using the JCAMP-
DX to CSV file converter script found at the following link: https://www.cheminfo.org/Chemis 
try/Cheminformatics/JcampConverter/index.html JCAMP-DX converter scripts’ outputs were extracted and 
pasted into Excel spreadsheets as a CSV format. All liquid-state standards’ NIR spectra (butyric acid, hexanoic 
acid, octanoic acid and decanoic acid) were baseline adjusted with respect the solid-state cheeses’ NIR 
absorbances’ spans using a standard correction factor. The first derivative NIR Absorbance data matrixes (NIR 
data matrix B, Fig. 2) were obtained from Raw data with Microsoft Excel. The first derivative selected NIR 

https://www.cheminfo.org/Chemistry/Cheminformatics/JcampConverter/index.html
https://www.cheminfo.org/Chemis%20try/Cheminformatics/JcampConverter/index.html
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spans absorbance data inputs (NIR data Matrix C, Fig. 3) were obtained from NIR data matrix B, by zeroing all 
NIR frequency regions that were identified as non-relevant inputs to be considered for MSA. Individual CSV 
files were arranged first in a two-variables input format (mz / into) suitable for MetaboAnalyst 5.0 software. 
Each NIR raw data and first derivative triplicate were saved in folders defined by its discriminant factor (type 
of cheese / type of standard). All variable sets were in turn arranged in a proper .zip format as standard 
Metaboanalyst 5.0 Statistical analysis inputs. 

 
Statistical analysis 

Multivariate statistical analysis of raw and first derivative NIR data matrices were performed using 
unsupervised principal component analysis and Partial Least Squares Discriminant Analysis (PLS-DA), with 
the software MetaboAnalyst 5.0. Data pre-processing comprising normalization by sum (for adjust differences 
amongst samples), transformation (Log) and autoscaling (mean centering divided by standard deviation of each 
variable) were applied to remove any possible variation during experimental phase, in order to make features 
as comparable as possible [8,24-25]. PLS-DA model validations were done with 100 permutations per analysis. 
Reliability of each classification per model was evaluated in terms of goodness of fit (R2) and goodness of 
prediction (Q2). The T2 Hotelling’s regions depicted by ellipses in score plots of each model define a 95 % 
confidence interval. 
 
 
Results and discussion 
 
Table 1. Resumes the expected NIR fingerprints for fatty acids in cheeses, according to recent literature.  

Vibration mode Wavenumber range 
(cm-1) 

Wavelength range 
(nm) Reference 

C-H 8331, 7140, 5712, 4327, 4273 1200, 1400, 1750, 2310, 2340 [25] 

C-H fat’s vibrations 4295-4805 2030-2080 [26] 

C-H combination bands 4327- 4273 2310-2340 [25] 

C-H first overtone 5812-5681 1720-1760 [25] 

C-H saturated acids 5681 1760 [26] 

CH2 second overtone 8262 1210 [27] 

=C-H (cis) 5951, 4651-4563 1680, 2150-2190 [28] 

=C-H (C18:1) 5797 1725 [29] 

C=O (stretching) 
acids & esters 5666-5778 1765-1730 [30] 

 
 
Fig. 1 shows the Near Infrared raw data of twelve cheeses Q1 to Q12 (Fig. 1(B), see Materials and 

methods, section 2.1) made from cow's milk, as well as of the seven SFA standards S1 to S7 (Fig. 1(A), see 
Materials and methods, section 2.1), collected with the same acquisition parameters (Materials and methods, 
section 2.2), whereas the most representative NIR regions for cheeses’ analysis obtained from literature [24-
29] are highlighted within the stacked NIR plots. The signals correspond to fat (8000 to 9000, 5400 to 6000, 
and 4000 to 4500 cm-1) and moisture (6000 to 8000 and 4500 to 5400) cm-1, in agreement with previous 
reported NIR data [19,23,25-31] from cheeses made from different ruminants (cow, ewe and goat milk), seasons 
(summer and winter) and ripening times (0 to 6 months). 
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Fig. 1. (A) Near infrared spectra of S1 to S7 fatty acid standards. (B) Near infrared spectra of Q1 to Q12 cheeses.  
 
 

Curto et al., [32] identified four NIR signals (8264.46, 6896.55, 5780.35, 5181.35 cm-1) relevant to 
discriminate processing, seasonality (winter and summer), and type of formulation (0 to 100 % of raw milk 
from cows, ewes and goats) in Spanish cheeses.  

In the present study, a wavelength range of 4000 to 10000 cm-1 was used, which allowed the 
identification of a large number of signals, such as a previous study reported by Bittante et al [33]. 

Fig. 1(A) shows within the NIR plots elaborated from the raw data matrix, three specific narrow signals 
associated to (C4:0 to C16:0) SFA, observed for the seven SFA standards:  

- 8262 cm-1(-CH2 overtone),  
- 6665(-OH- stretching),  
- 5666-5778 C=O in fatty acids.  

In parallel, for all analyzed Q1 to Q12 cheeses, Fig. 1(B) shows signals from:  
- 4000 to 4500 cm-1  
- and 5500 to 6100 cm-1  

respectively associated to -CH- vibration and C=O vibration in combination with the -CH- first 
overtone groups 

Fig. 2 shows the NIR data matrix A of Q1 to Q12 cheeses, with their respective acquisition replicates 
used as data inputs for PCA and PLS-DA analyses. Identical NIR wavelength ranges were used for 
postprocessing NIR Data Matrix A into NIR data matrix B (Fig. 3) and NIR data matrix C (Fig. 4). 

The resolution of NIR data matrix A raw spectra was improved through a first derivative span 
postprocessing, albeit the intrinsic loss of signal-to noise ratio [34]. For dairy products, Lobos-Ortega et al., 
[23] report different data treatments such as applying the second derivative to generate a model that 
discriminates cheeses of different species (cow, ewe and goat milk) based on their polyunsaturated fatty acid 
composition. On the other hand, in the model described by Zhao et al., [35], designed to detect fatty acids in 
cow's milk using the MIR technique, five data pre-processing algorithms were used, revealing the advantages 
of using first and second derivative postprocessing routines, that produce R2 predicting reliability. 

Furthermore, Pereira et al., used first and second derivative MIR postprocessing routines as models 
capable to discriminate butter made with milk’s fat, with respect adulterated butter with soybean fat [36], 
reporting discriminant efficiency between authentic and counterfeited butter by means of the proposed fatty 
acid model, with outstanding root mean squared (RMSE), relative prediction errors (RE %) and (R2) predictive 
coefficients values, when MIR spectra were postprocessed with first and second derivative routines.  
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Fig. 2. NIR absorbance raw spectra acquired by triplicate, of the full set of analyzed Q1 to Q12 cheeses, referred 
as “NIR data matrix A” (see materials and methods).   
 
 
 

For the present study the application of a first derivative routine for producing NIR data Matrix B from 
NIR data matrix A, three main discriminant regions are observed: 

- 8000 to 10000 (-CH- overtone),  
- 5000 to 6000 (C=O vibration mode) and  
-4000 to 5000 cm-1(-CH- vibration), as highlighted in Fig. 3. The signals coincide with the three regions 

reported by Ayraz et al.,for fatty acids in Ezine cheese [31].  
In terms of acquisition mode as a function of sample type, NIR data of both grated Q1-Q12 cheeses 

(Figures 1-4), liquid-state S1 to S4 standards and solid-state S5 to S7 standards (Figures 1 and 5), were carried 
out in absorbance mode, finding accurate agreements with equivalent dairy’s NIR spectra acquired at 
reflectance mode [37-38] likewise previous reports describing NIR reflectance acquisition modes for grated 
fresh freeze-dried cheeses [39], cheeses’ slices [40,16,23], and cheese fat extracts [16] to predict fatty acids in 
all cases. Other reports have used transmittance-mode data acquisition in ground cheeses, to generate predictive 
fatty acid models [14]. The transmittance method is typically used for liquid materials or solid systems with 
thin layers [41,42]. Accuracy of NIR absorbance acquisition mode herein used to analyze the pair of grated Q1-
Q12 cheeses and S1 to S7 standards, have found also agreements with other cheeses’ NIR strategies using 
reflectance-transmittance [42] or transflectance [43] acquisition modes. 

To the best of our knowledge, few reports describe easy and straightforward methods for variable 
wavelength selection (“data binning” [44]) of near-infrared spectra for performed multivariate analysis. A 
simple alternative for NIR data binning is herein presented:  

1. Relevant frequencies of NIR spectra are left as in the raw input.  
2. Those frequencies wanted to not be considered in post-processed MSA data inputs, are simply 

withdrawn from the NIR raw data, by zeroing those frequency regions not being considered within a 
variable wavelength selection of a not zeroed NIR data matrix.   
Fig. 4 shows the NIR data matrix C of Q1 to Q12 cheeses, obtained from NIR data matrix B (Fig. 3), 

zeroed from non-relevant frequency regions. With a higher spectral resolution, three main frequency ranges are 
appreciated respectively at: 

- 9700 - 8265 cm-1 
- 6661 - 4655 cm-1, and 
- 4327 - 4003 cm-1 
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Those NIR wavenumber ranges correspond to respectively fatty acids overtones and main vibration 
modes, in full agreement to previous reports using NIR spectroscopy to identify medium chain C6:0 to C16:0 
SFA -mainly palmitic acid in cow products from the 5780.3 – 5665.7 cm-1 -C=O- carboxylic vibration mode 
[16,45], a fatty acid profile model for distinguishing geographical origins of Coalho cheeses, mainly from the 
5882.3 – 5404.4 cm-1 vibrations modes [46], -CH- overtones respectively at 8403.3 and 5847.9 cm-1 from a 
Ricotta cheese study [24] and a model applied in Abondance and Tomme de Savoie cheeses finding =C(sp2)-
H and -OH- key vibration modes at respectively 4664.2 cm-1 and 6666.6 cm-1 [39]. 

 

 
Fig. 3. First derivative NIR absorbance post-processed spectra acquired by triplicate, of the full set of analyzed 
cheeses, referred as “NIR data matrix B” (see materials and methods).   
 
 
 

 
Fig. 4. First derivative-selected NIR spans absorbance spectra acquired by triplicate, of the full set of analyzed 
cheeses, referred as “NIR data matrix C” (see materials and methods).   

 
 
 
Fig. 5 present NIR data matrix A, B and C of seven fatty acid standards S1=butyric acid (C4:0), 

S2=hexanoic acid (C6:0), S3=octanoic acid (C8: 0), S4=decanoic acid (C10:0), S5=dodecanoic acid (C12:0), 
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S6=myristic acid (C14:0), and S7=palmitic acid (C16:0). Expected relevant frequencies reported elsewhere, 
associated to SFA vibration modes include [16,45]: 

- 4327 and 4273 cm-1(-CH-first overtone),  
- 5492 and 6171 cm-1 (-CH-),  
- 5666 to 5797 cm-1 (C=O),  
- 6665 cm-1(-OH-),  
- 8262 cm-1(-CH2),  
- 8532 - 9689 (-CH- second overtone).  

 
 

 
Fig. 5. NIR spectra of S1 to S7 fatty acid standards A raw absorbance data. B Post-processed first derivative 
NIR spans and C Post-processed first derivative selected NIR spans. 

 
 
 
Fig. 6 presents the workflow to carry out data arrays of each NIR data matrix A, B and C as inputs for 

PCA and PLS-DA multivariate statistical analysis done with the stream-lined metabolomics data analysis 
software MetaboAnalyst 5.0 (vide infra). 

First, all NIR acquisitions were exported from the instrument format Bruker OPUS 7.8 program, into 
a universal Joint Committee on Atomic and Molecular Physical Data (JCAMP-DX) IUPAC standard format. 
Subsequently, all data were converted to a comma separated value format (CSV), using the JCAMP-DX to CSV 
file converter script from the cheminformatics department of the Swiss Federal Institute of Technology, 
available from the following website: https://www.cheminfo.org/Chemis 
try/Cheminformatics/JcampConverter/index.html JCAMP-DX converter scripts’ outputs are copied and pasted 
into Excel spreadsheets as an editable comma-separated values (.csv) format. Individual (.csv) files were 
arranged first in a two-variables input format (variable “mz” for wavenumbers / variable “into” for absorbances 
[data matrix A] and Δ Absorbances [data matrix B and data matrix C]) suitable for MetaboAnalyst 5.0 software. 
Fig. 6 shows the example of this two-variables array (wavenumber / [Δ] absorbances) plotted for NIR data 
matrix A (yellow arrow pathway, using Q2= Santa Cruz® as example within the Fig. 6), NIR data matrix B (red 
arrow pathway, using Q4= Adobera, San Luis Potosí cheese as example within the Fig. 6) and NIR data matrix 
C (green arrow pathway, using Q12= Grana Padano cheese as example within the Fig. 6). Each NIR raw data 
and first derivative (full and zeroed) triplicates were saved in folders defined by its discriminant factor (Q1-Q12 
cheeses / S1-S7 standards). All variable sets were in turn arranged in a proper .zip format as one-factor standard 
Metaboanalyst 5.0 Statistical analysis inputs.  

 

https://www.cheminfo.org/Chemis%20try/Cheminformatics/JcampConverter/index.html
https://www.cheminfo.org/Chemis%20try/Cheminformatics/JcampConverter/index.html
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Fig. 6. Workflow to produce NIR data matrixes A (yellow arrows), B (red arrows) and C (green arrows) as 
inputs for multivariate statistical analysis carried out with the stream-lined metabolomics data analysis software 
MetaboAnalyst 5.0. (https://www.metaboanalyst.ca/). 
 
 
 

Fig. 7 depicts unsupervised PCA score (top) and loading (bottom) plots obtained from NIR data 
matrixes A (left), B (middle) and C (right).  

PCA score plot of Data Matrix A present a principal component 1 (PC1) of 80.6 % variance and PC2 
of 16.2 % variance, together explaining the 96.8 % of the total variability of the data. PCA score plot of Data 
Matrix B present a PC1 of 29.2 % variance and PC2 of 13.1 % variance, together explaining the 42.3 % of the 
total variability of the data. Finally, PCA score plot of Data Matrix C present a principal component 1 (PC1) of 
28.4 % variance and PC2 of 12.9 % variance, together explaining the 41.3 % of the total variability of the data. 
Despite having better variance with NIR data matrix A, first derivative spans (full -NIR data matrix B- and 
zeroed -NIR data matrix C-) are the inputs that best group the samples, as observed within the loading plots in 
Fig. 7 bottom, whereas each loading element represent explanatory variables, wherein the more and better 
distributed they are from the origin, the better is the model to discriminate amongst discriminant factors. This 
is explained by the fact that loading plots are the multivariate version of scatter plots, thus showing the effect 
of predictors on variables [47]. The use of the raw data matrix A has limitations, such as the use of few 
discriminant variables, which may cause an overestimation of the model, as observed in the PCA loading plot 
produced with the raw NIR absorbance data matrix, shown in Fig. 7 (bottom, yellow dots). On the other hand, 
the use of a first-derivative NIR absorbance data matrix greatly decreases the variance and has a larger number 
of discriminant variables (green dots for loadings obtained with PCA from Data Matrix B, magenta dots for 
loadings obtained with PCA from Data Matrix C, Fig. 7 bottom) and thus a more reliable model for unraveling 
subtle differences between cheeses and fatty acid standards. Combined PCA and MPLS have been employed 
to respectively reduce non-relevant NIR signals to produce highly discriminating NIR data matrices and for 
fatty acid quantification, performing principal components to elucidate metabolomic features related to thawed 
and fresh cheeses, with acceptable variances of about 72 % to discriminate features related to freshness in 
cheeses, with only two principal components [16-39].  

All NIR data sets produce PCA score plots (Fig. 7, top) defining Q1-Q12 cheeses at the (PC1, PC2) 
origin, whilst the S1- S7 standards are distributed in different (PC1, PC2) coordinates. The closer the S1- S7 
coordinates to the Q1-Q12 origin counterpart, shall suggest the presence of a specific SFA in the cheeses. In all 
cases, S5- S7 C12:0, C14:0 and C16:0 SFA share PCA dimensionality with the full set of Q1-Q12 cheeses. Data 
matrix C PCA score plot best represents the PCA equivalence of lauric, myristic and palmitic SFA scores with 
the full set of analyzed cheeses, strongly suggesting their presence in the dairy products. Myristic (C14:0) and 
palmitic (C16:0) fatty acids have been reported in fresh cheeses [39] and also in cow's milk which also contains 
stearic acid (C18:0) [48]. On the other hand, lauric acid is associated with a strong soapy flavor in cheeses [49-

https://www.metaboanalyst.ca/
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50]. The fact that all cheese samples are clustered near zero in all PCA essays, have also been reported in 
metabolomics quality control analysis, whereas dairy products have explicitly been mixed with SFA in different 
ratios [51-52]. 

 

 
Fig. 7. Unsupervised Principal Component Analysis (PCA) score plots (top) and loading plots between principal 
components 1 and 2 (bottom) of each multivariate statistical analysis carried out with NIR data matrix A (left), 
data matrix B (middle) and data matrix C (right) inputs. Cheeses’ Q1-Q12 score plots are highlighted in blue, 
whilst standards’ S1-S7 score plots are highlighted in red. 

 
 
 
Fig. 8 represents the supervised PLS-DA of the full set of the .csv NIR data matrixes presenting the 

following variances (%), goodness of prediction (Q2) and goodness of mathematical fitting (R2)  
- NIR data matrix A PLS-DA outlier: 85.5 % (Q2= 0.43 and R2 =0.45) 
- NIR data matrix B PLS-DA outlier: 37.6 % (Q2= 0.78 and R2 =0.82) 
- NIR data matrix CPLS-DA outlier: 37.0 % (Q2= 0.83 and R2= 0.9) 

In all cases, the use of 3 PLS-DA components are sufficient to represent a goodness of prediction of 
respectively Q2= 43 %, 78 %, and 83 % (Fig. 8, bottom). PLS-DA score plot of Data Matrix A presents a 
principal component 1 (PC1) of 79.6 % variance and PC2 of 5.9 % variance, together explaining the 85.5 % of 
the total variability of the data. PLS-DA score plot of Data Matrix B presents a PC1 of 25.0 % variance and 
PC2 of 12.6 % variance, together explaining the 37.6 % of the total variability of the data. Finally, PLS-DA 
score plot of Data Matrix C presents a principal component 1 (PC1) of 28.2 % variance and PC2 of 8.8 % 
variance, together explaining the 37.0 % of the total variability of the data. 

In comparison to unsupervised PCA, supervised multivariate statistical analysis of NIR data matrixes, 
produce score plots with equivalent two-component variances and a noticeable variable separation 
enhancement. PCAs of first derivative NIR spans (Data Matrix B) and first derivative selected NIR spans (Data 
Matrix C) only produce a pronounced separation between S1-S7 standards and Q1-Q12 cheeses, with respect the 
PCA score plot of NIR Data Matrix A, being the chesses’ scores mostly defined within the PCA origin.  

With the most discriminant PLS-DA model obtained with NIR data matrix C, the samples are dispersed 
along the axes, whereas it is observed a geographical origin separation between Mexican (Q1-Q9, with PC2 
positive or close to zero) and foreign cheeses (Q10-Q12, negative PC2 component). Mexican cheeses present the 
same positive PC2 dimensionality as for S1 to S5 low chain fatty acid standards (butyric, hexanoic, octanoic, 
decanoic and dodecanoic acids). In contrast, American and Italian cheeses’ PLS-DA score plots analyzed with 
NIR data matrix C, present the same PC2 negative dimensionality as with S6 (myristic acid) and S7 (palmitic 
acid) SFA standards, strongly suggesting their higher content within their composition.  
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In terms of the set of Mexican cheeses, Zacazonapan 15-day (Q8) and 30-days (Q9) ripening cheeses 
contain very similar PLS-DA score plots and have therefore no evident discrimination of the ripening time, 
with the selected multivariate statistical analysis model. Similar trend is observed for the Ocosingo ball cheese 
obtained from its core (Q1B) and from its crust (Q1A), with no evident separation amongst score plots, strongly 
suggesting their similar composition, including their SFA profile.  

On the other hand, the Oaxaca type cheese (Q6, PC1 (-), PC2 (-)) from Hidalgo and its Oaxacan quesillo 
counterpart (Q5, PC1 (-), PC2 (+)) present significant differences in the PLS-DA score plots, with the 
multivariate model obtained from NIR data matrix C, whereas these differences might be considered as a 
geographical origin fingerprint, whereas climatic, environmental conditions and livestock feeding are 
significantly unique from each region. Furthermore, both analyzed Chiapas cheeses’ brands (Q2 Santa Cruz®, 
PC1 (-), PC2 (-)) and Q3 Vaquero®, PC1 (-), PC2 (+)) present slight differences in their score plots. The 
comparative model with S1-S7 SFA standards might suggest that this set of differences are due to the fatty acid 
content in each analyzed dairy product. Such as with American and Italian samples with an equivalent negative 
PC2 dimensionality with C14:0 (S6, myristic acid) and C16:0 (S7, palmitic acid), Mexican cheeses presenting 
same trend are Q1A / Q1B (Ocosingo, Chiapas), Q2 (Queso Crema de Chiapas), Q4 (Adobera, San Luis Potosí) 
and Q6 (Hidalgo). 

 

 
Fig. 8. Partial Least Squares Discriminant Analysis (PLS-DA) score plots (top) and histogram representation 
(bottom) of the goodness of the MSA fit (R2) and goodness of prediction (Q2) of each multivariate statistical 
analysis carried out with NIR data matrix A (left), data matrix B (middle) and data matrix C (right) inputs. 
Chesses’Q1-Q12 score plots are highlighted in blue, whilst standards’ S1-S7 score plots are highlighted in red. 
Both goodness of prediction (Q2, turquoise histograms) and goodness of mathematical fitting (R2, pink 
histograms) were obtained with only three main PLS-DA components, whereas the contribution of each 
component is highlighted as 1, 2, and 3 sets of histograms. 

 
 
 
Data validation by means of hierarchical clustering of NIR raw data matrix A, first derivative NIR data 

matrix B and first derivative selected NIR spans data matrix C (frequency binning strategy of regions between 
9700 to 8265 (-CH- overtone), 6661 to 4655 cm1 (-C=O- overtone) and from 4327 to 4000 cm-1(-CH-), shown 
as dendrograms are depicted in Fig. 9. Data sampling of both Chesses (Q1-Q12) and SFA standards (S1-S7) 
with NIR data matrix C is the only one presenting two different sets of well separated clusters: S1 to S9 SFA 
standards and Q1 to Q12 cheeses, thus indicating the accuracy of data sampling with the NIR frequency binning 
strategy herein presented, with NIR data matrix C. In consequence, hierarchical cluster analysis is carried out 
exclusively from dendrogram obtained with NIR data matrix C (extreme right, Fig. 9).  

For SFA standards’ clusters, three main sets are observed:  
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I. low molecular weight S1 (C4:0, butyric), S2 (C6:0, hexanoic), S3 (C8:0, octanoic) and S4 (C10:0, 
decanoic) fatty acids 

II. Medium S5 (C12:0, lauric acid) SFA 
III. Higher molecular weight S6 (C14:0, myristic) and S7 (C16:0, palmitic) acids.  

For cheeses’ clusters, four main sets are observed:  
I. Q11 (Camembert, United States), Q4 (Adobera, San Luis Potosí, Mexico), Q5 (Quesillo artesanal 

cheese, Oaxaca, Mexico) and Q12 (Grana Padano, Italy) 
II. Q8 (Zacazonapan 15 days ripening, Estado de Mexico), Q9 (Zacazonapan 30 days ripening, Estado de 

Mexico), Q1A (Ocosingo crust ball cheese, Chiapas, Mexico) Q1B (Ocosingo core ball cheese, Chiapas, 
Mexico), Q2 (Santa Cruz® “queso crema”, Chiapas, México) and Q3 (Vaquero® “queso crema”, 
Chiapas, México) 

III. Q6 (Oaxaca type cheese, Hidalgo, Mexico) and Q10 (cheddar, Tillamook®, United States) 
IV. Q7 (Cotija cheese, Jalisco, Mexico) 

This NIR data matrix C hierarchical clustering correlates with previous PLS-DA score plot 
observations, such as the classification of low (S1-S4), medium (S5) and higher (S6-S7) SFA categories, Mexican 
cheeses (Q1-Q9) from their American and Italian counterparts (Q10-Q12, except from the lack of hierarchy 
difference between Q6 and Q10), cheeses from same type but different geographical origin (Q5 / Q6) and the lack 
of discrimination between samples from the same origin but different ripening processes (Q8- Q9) or chesses’ 
surfaces (Q1A- Q1B). Previous studies using dendrogram clustering include a model to trace cheeses’ maturation 
time by identifying fatty acids profiles in cottage, Dutch, Swiss, blue, and Italian type cheeses in dendrogram 
clustering through a criterion based on grouping by Euclidean distances and agglomerating by the Ward method 
[53-55]. 

 

 
Fig. 9. Hierarchical clustering of NIR raw data matrix A (extreme left), first derivative NIR data matrix B 
(middle) and first derivative selected NIR spans data matrix C (extreme right), shown as dendrograms, using 
Euclidian distances and clustering algorithms for distance measurements amongst cheeses (Q1-Q12, 
highlighted with black tags) and SFA standards (S1-S7, highlighted with red tags). 
 
 
Conclusions 
 

The use of three different near infrared data matrixes for (un)-supervised multivariate statistical 
analysis with the stream-lined metabolomics data tool Metaboanalyst -with more than 300,000 users to date- is 
discussed. Data sampling comprises 19 triplicates of NIR absorbance spectra from nine Mexican, two American 
and one Italian chesses with seven SFA standards. Absorbance NIR data inputs triad are: i) acquired 12500 to 
3600 cm-1 spans, ii) first derivative NIR spans of the full acquired frequency range and iii) first derivative 
selected NIR spans by zeroing all frequency ranges except from 9700 to 8265 cm-1, 6661 to 4655 cm-1 and from 
4327 to 4000 cm-1 as a NIR wavelength binning strategy. All NIR spectra from data matrix A were exported 
from the instrument format, into a universal JCAMP-DX IUPAC standard format. Subsequently, all data were 
converted to a comma separated value format (CSV), using the JCAMP-DX to CSV file converter script. The 



Article        J. Mex. Chem. Soc. 2025, 69(3) 
Regular Issue 

©2025, Sociedad Química de México 
ISSN-e 2594-0317 

 

649 
 

conversion outputs are copied and pasted into Excel spreadsheets as an editable comma-separated values (.csv) 
format. Individual (.csv) files were arranged in a two-variables input suitable for both NIR postprocessing with 
Microsoft Excel to produce NIR data matrixes B and C and for MSA carried out with MetaboAnalyst 5.0 
software. NIR data matrix C was the best input for analyzing correlations between cheeses and SFA standards, 
whereas its supervised PLS discriminant analysis provided the most reliable goodness of mathematical fit (R2 
= 0.9) and model prediction (Q2 = 0.83) values. 

None of the NIR PLS-DA models were able to discriminate between specific discriminant factors of 
samples from the same origin such as ripening (Q8 / Q9) or cheeses’ surface such as core or crust (Q1A / Q1B), 
but the best selected NIR data matrix C model accurately differentiate between Mexican, American and Italian 
samples, cheeses from same type but different geographical origin (Q5 / Q6), and cheeses from same type and 
geographical origin but different brand (Q2 / Q3), the last also confirmed with hierarchical cluster analysis. The 
comparative model between Q1-Q12 cheeses with S1-S7 SFA standards might suggest that the observed set of 
differences are due to the fatty acid content in each analyzed dairy product. These results overall suggest that a 
robust cheeses’ NIR profiling of specific discriminant factors such as geographical origin, type of cheese, 
texture (soft / hard), source of raw milk, seasonal origin, gross composition, fatty acids’, organic acids’ and 
volatile compounds’ profiles as well as sensory and quality traits, shall be more and more possible by means of 
i) reducing the heterogeneity of the samples (grating or milling with respect analyzing intact samples), ii) 
selecting an appropriate absorbance – transmittance or reflectance acquisition scheme with a considerable 
signal-to-noise ratio and iii) considering the use of a NIR wavelength binning post-processing strategy, as herein 
presented, applied to the highest possible data set.  
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