Microwave-Assisted Synthesis and Evaluation of the Optoelectronic Properties of Metallated *Meso*-Tetraphenylporphyrin Complex

Rosalio Velarde-Barraza, Edgar A. Reynoso-Soto, Ignacio A. Rivero*

Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, Blvd. Alberto Limón Padilla S/N 22510 Tijuana, B. C., México.

*Corresponding author: Ignacio A. Rivero, email: <u>irivero@tectijuana.mx</u>

Received October 20th, 2023; Accepted April 11th, 2024.

DOI for the article: http://dx.doi.org/10.29356/jmcs.v69i2.2156

Supplementary Information

Fig. S1. FTIR spectrum of compound 3.

Fig. S2. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3.

Fig. S3. ¹³C NMR spectrum (400 MHz, CDCl₃) of compound 3.

Fig. S4. Mass spectrum (ESI-MS) of compound 3.

Fig. S5. FTIR spectrum of compound 4a.

Fig. S6. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4a.

Fig. S7. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 4a.

Fig. S8. FTIR spectrum of compound 4b.

Cobalt 5, 10, 15, 20-tetraphenylporphyrin (4b)

Fig. S9. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4b.

Fig. S10. FTIR spectrum of compound 4c.

Fig. S11. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4c.

Fig. S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4c.

Fig. S13. FTIR spectrum of compound 4d.

Fig. S14. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4d.

Fig. S15. FTIR spectrum of compound 4e.

Fig. S16. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 4e.

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Fig. S17. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 4e.

0.99721

Equation	y = a + b*x
Plot	Absorbance
Weight	No Weighting
Intercept	0.00525
Slope	314926.47059
Residual Sum of Squares	4.63676E-4
Pearson's r	0.99983
R-Square(COD)	0.99966
Adj. R-Square	0.99963

Photophysical properties Ultraviolet-visible absorption spectroscopy

Adj. R-Square

Fig. S18. UV-vis absorption spectra of compounds 3 (a), 4a (b), 4b (c) and 4c (d), in DCM.

Fig. S19. UV-vis absorption spectra of compounds 4d (a) and 4e (b) in DCM.

Fluorescence emission spectroscopy

Emission spectra of the *meso*-tetraphenylporphyrin metal analogs were obtained with a Varian Eclipse spectrophotometer using a 1 cm quartz cell in a measurement range of 500-800 nm at a scan rate of 600 nm/min. Samples were solubilized in DCM to obtain a 1×10^{-4} M stock solution. The initial measurement

solution for all compounds evaluated was 1×10^{-7} M and then for each additional measurement aliquot additions of 1×10^{-7} M were made to obtain a gradual measurement of their increase with respect to concentration until a saturation of fluorescence emission was obtained. Fluorescence quantum yields were obtained by the following equation:

$$\Phi_{f}(\mathbf{X}) = \left(\frac{A_{s}}{A_{x}}\right) \left(\frac{F_{x}}{F_{s}}\right) \left(\frac{n_{x}}{n_{s}}\right)^{2} \Phi_{f}^{(\mathbf{S})}$$

Where $\Phi_f(X)$ is the fluorescence quantum yield of the sample. *A* is the absorbance at the excitation wavelength, *F* represents the area under the curve of the emission band, *n* represents the refractive index of the solvent used, *S* is the standard compound used and *X* is the sample to be evaluated. [1,2]

Computational study

Compound	λ _{exi} (nm)	<i>E</i> (eV)	f	Transition	Р
3	571	2.1718	0.0403	HOMO-1→LUMO+1	0.3857
				HOMO→LUMO	0.5890
	528	2.3494	0.0521	HOMO→LUMO+1	0.5741
	386	3.2079	0.6777	HOMO-1→LUMO+1	0.5060
4a -	538	2.3033	0.0330	HOMO-1→LUMO	0.4241
				HOMO→LUMO+1	0.5626
	372	3.3308	1.3825	HOMO-1→LUMO	0.5549
				HOMO←LUMO+1	0.1066
4b	1158	1.0705	0	HOMO-2→LUMO	0.3939
				HOMO-1→LUMO+1	0.3810
4c	590	2.0992	0.0002	HOMO-2→LUMO+3	0.5160
	513	2.4153	0.0208	HOMO→LUMO	0.5407
4d	650	1.9057	0	HOMO→LUMO	0.6681
4e	531	2.3325	0.0344	HOMO→LUMO	0.4928
	404	3.0665	0.0586	HOMO-2→LUMO	0.4002
				HOMO-2→LUMO+1	0.5415
				HOMO-1→LUMO+1	0.1086

Table S1. Calculated electronic excitation energies, oscillator strength and electronic transition.

**E* (eV), Energy in electronvolt; *f*, oscillator force; *P*, probability.

References

- Jung, S.-H.; Choi, J.-H.; Yang, S.-M.; Cho, W.-J.; Ha, C.-S. *Mater. Sci. Eng. B.* 2001, *85*, 160–164. DOI: <u>https://doi.org/10.1016/S0921-5107(01)00600-6</u>.
- Taniguchi, M.; Lindsey, J. S.; Bocian, D. F.; Holten, D. J. Photochem. Photobiol. C Photochem. Rev. 2021, 46, 100401. DOI: <u>https://doi.org/10.1016/j.jphotochemrev.2020.100401</u>.