
Article        J. Mex. Chem. Soc. 2022, 66(4) 
Regular Issue 

©2022, Sociedad Química de México 
ISSN-e 2594-0317 

 
 

513 
 
 

 
Theoretical Investigation of the Cooperation of Iminoguanidine with the 
Enzymes-Binding Domain of Covid-19 and Bacterial Lysozyme Inhibitors 
and their Pharmacokinetic Properties 

 
Emmanuel Israel Edache1,2*, Adamu Uzairu2, Paul Andrew Mamza2, Gideon Adamu Shallangwa2 
 
1Department of Pure and Applied Chemistry, University of Maiduguri, Borno State, Nigeria. 
2Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria. 
 
*Corresponding author: Emmanuel Israel Edache, email:  edacheson2004@gmail.com  
 
Received January 24th, 2022; Accepted August 1st, 2022. 
 
 
DOI: http://dx.doi.org/10.29356/jmcs.v66i4.1726                              
 
 
Abstract. The investigation for innovative treatments for Pseudomonas aeruginosa and SARS-CoV-2 is a 
burgeoning field. Even though scientists and pharmaceutical companies have made significant contributions to 
the research of multi-drug resistance infections from a variety of perspectives, these diseases remain incurable. 
As a result, developing novel and more effective drugs for proteins associated with Pseudomonas aeruginosa 
and SARS-CoV-2 has become a top priority in recent years. In this regard, the protein is known as a putative 
inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa] and chain A, spike protein S1 [SARS-CoV-2], and 
it is one of the key targets for the development of new drug candidates that could be used as inhibitors in both 
Pseudomonas aeruginosa and SARS-CoV-2 chemotherapies. The structural characteristics and binding 
mechanism of certain inhibitors of Pseudomonas aeruginosa and SARS-CoV-2 receptor were investigated using 
Quantitative-Structure Activity Relationship (QSAR), homology modeling, molecular docking, and molecular 
dynamics simulation in this study. To create a 3D model of the receptors, a homology modeling approach was 
used. The X-ray crystal structures of chain A inhibitor of vertebrate lysozyme (PDB: 4PS6) and chain A spike 
protein S1 (PDB: 7MZF), respectively, were employed as templates for this technique. The final projected 
structure is obtained and examined by the programs ERRAT, VERIFY3D, and PROCHECK, confirming that 
the final model is credible. The anticipated structure was fine-tuned before being employed in docking 
simulations. The results of the structure-based virtual screening show that two potent new lead molecules, 
compounds 7 and 15, have the most noteworthy affinity to the predicted 3D receptors. The docked compound 
15 was subjected to a 1 ns molecular dynamics (MD) simulation. Compound 15 produced more hydrophobic 
and van der Waal's contacts, according to MD simulations, and binds to SARS-CoV-2 spike protein S1 more 
closely. The Lipinski rule of five assessment revealed that these lead compounds had significant 
pharmacological characteristics. As a result, the current research will aid in the development and synthesis of 
another class of chain A inhibitors of vertebrate lysozyme and chain A spike protein S1 inhibitors that restore 
drug compound susceptibilities.  
Keywords: Pseudomonas aeruginosa; SARS-CoV-2; QSAR; homology modelling; Ramachandran plot; 
docking simulations; molecular dynamic simulations; ADME. 
 
Resumen. La investigación de tratamientos innovadores para Pseudomonas aeruginosa y SARS-CoV-2 es un 
campo floreciente. A pesar de que los científicos y las compañías farmacéuticas han hecho contribuciones 
significativas a la investigación de infecciones por resistencia a múltiples medicamentos desde una variedad de 
perspectivas, estas enfermedades siguen siendo incurables. Como resultado, el desarrollo de fármacos 
novedosos y más eficaces para las proteínas asociadas con Pseudomonas aeruginosa y SARS-CoV-2 se ha 
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convertido en una prioridad en los últimos años. En este sentido, la proteína es conocida como un supuesto 
inhibidor de la lisozima de vertebrados [Pseudomonas aeruginosa] y de la cadena A, proteína espiga S1 [SARS-
CoV-2], y es uno de los objetivos clave para el desarrollo de nuevos fármacos candidatos que podrían utilizarse 
como inhibidores tanto en pseudomonas aeruginosa como en quimioterapias de SARS-CoV-2. Las 
características estructurales y el mecanismo de unión de ciertos inhibidores de Pseudomonas aeruginosa y el 
receptor SARS-CoV-2 se investigaron utilizando la Relaciones Cuantitativas de Estructura-Actividad - (QSAR, 
por sus siglas en inglés), el modelado por homología, el acoplamiento molecular y la simulación de dinámica 
molecular. Para crear un modelo 3D de los receptores, se utilizó un enfoque de modelado por homología. Las 
estructuras cristalinas de rayos X del inhibidor de la cadena A de la lisozima de vertebrados (PDB: 4PS6) y la 
proteína de espiga de cadena A S1 (PDB: 7MZF), respectivamente, se emplearon como plantillas para esta 
técnica. La estructura final proyectada se obtuvo y examinó con los programas ERRAT, VERIFY3D y 
PROCHECK, confirmando que el modelo final es creíble. La estructura anticipada se afinó antes de ser 
empleada en simulaciones de acoplamiento. Los resultados del cribado virtual basado en la estructura generaron 
dos nuevas y potentes moléculas líderes, los compuestos 7 y 15, que tienen la afinidad más notable con los 
receptores 3D predichos. El compuesto acoplado 15 fue sometido a una simulación de dinámica molecular 
(DM) de 1 ns. El compuesto 15 produjo más contactos hidrófobos y de van der Waals, según las simulaciones 
de MD, y se une más de cerca a la proteína espiga S1 del SARS-CoV-2. La evaluación de la regla de cinco de 
Lipinski reveló que estos compuestos líderes tenían características farmacológicas significativas. Como 
resultado, la investigación actual ayudará en el desarrollo y la síntesis de otra clase de inhibidores de la cadena 
A de la lisozima de vertebrados y los inhibidores de la proteína de espiga de cadena A S1 que restauran las 
susceptibilidades de los compuestos farmacológicos. 
Palabras clave: Pseudomonas aeruginosa; SARS-CoV-2; QSAR; homología; gráficas de Ramachandran; 
acoplamiento molecular; simulaciones de dinámica molecular; ADME. 

 
 
Abbreviations 
 

ADME: Absorption, distribution, metabolism, 
excretion 
CCC: Concordance CorrelationCoefficient 
DFT: Density functional theory 
MAE: Mean Absolute Error in fitting 
MVD: Molegro virtual docker 
NAMD: NAnoscale Molecular Dynamics program 
NPT: number of constant pressure and temperature 

NVT: Number of constant volume and 
temperature 
PDB: Protein data bank 
PRESS: Predictive Residual Sum of Squares 
RMSD: Root mean square deviation 
s: Standard error of estimate 
SASA: Solvent-accessible surface area 
VMD: Visual Molecular DynamicS 

 
 
Introduction 
    

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterial nosocomial pathogen-multi-drug 
resistance pathogen that causes severe infections to cystic fibrosis (CF) patients [1], hospitalized, and 
immunocompromised patients [2]. These P. aeruginosa oftentimes colonize similar destinations, including the 
urinary lot, burn and surgical wounds, bacteremia, septicemia (blood poisoning), pneumonia, bronchitis, 
diarrhea, keratitis, skin and wound infections, and the upper respiratory tract [3,4]. P. aeruginosa is the most 
pervasive bacterial microbe that colonizes the lung, and their co-colonization is related to helpless patient 
outcomes, i.e., patients with cystic fibrosis [5]. The virulence nature of this pathogen in the cystic fibrosis 
patient’s lung and severity of cystic fibrosis lung disease is closely linked to iron homeostasis [6]. The Centers 
for Disease Control and Prevention in 2019, has considered P. aeruginosa as a serious health threat 
(https://www.cdc.gov/drugresistance/biggest_threats.html). P. aeruginosa is related to an expanded bounty of 
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other bacterial and viral pathogens, for example, Covid-19 (SARS-CoV-2), HIV and AIDs, STIs, diabetes, etc. 
Lysozymes are the significant cell divider polymer in the microorganisms [7], it provides resistance against 
turgor and its cleavage by hydrolases [8]. Lysozyme is an old bactericidal protein that is important for the 
antibacterial protection arrangement of vertebrate and invertebrate creatures [9]. Several studies support a role 
for these lysozyme inhibitors in bacteria–host interactions [10]. SARS-CoV-2 is the most recent coronavirus to 
be discovered, and it mostly affects the respiratory tract (nose and lungs), causing colds, bronchitis, and 
pneumonia [11].  The connection of the viral spike protein and the host angiotensin-converting enzyme 2 
(ACE2) causes an underlying passage and ensuing replication in the upper respiratory tract [12]. Due to higher 
amounts of ACE2 expression [13] and viral RNA (vRNA) at this region [14], the nasal cavity is believed to be 
the main site of viral replication rather than the oral cavity [15]. Speedy and uncontrolled propagation can bring 
about contamination of the lower respiratory tract and serious ailments. This virus is very contagious and has a 
high fatality rate [16]. It takes 2-14 days to incubate SARS-CoV-2 after exposure [17]. Dry cough, fever, 
shortness of breath, loss of taste or smell, skin rashes, conjunctivitis, exhaustion, muscle soreness, diarrhea, and 
fatigue are the first symptoms of SARS-CoV-2 infection, which are joined by other biological indicators such 
as lymphopenia [18]. The World Health Organization (WHO) listed severe acute respiratory syndrome-related 
(SARS) out of the nine (9) as one of the highly pathogenic viruses likely to cause epidemics. Under 90 days 
later its underlying rise in Wuhan, China WHO proclaimed serious intense respiratory disorder related to Covid-
19 (SARS-CoV-2) a pandemic [19] and at present no drugs are available to address this dangerous pathogen 
[20]. Older and an individual with prior ailments or comorbidities (cardiovascular sickness, diabetes, lungs 
infection, gram-positive or negative bacterial, and cancer) are bound to foster serious ailments. The spike 
glycoprotein creates a homotrimer that allows the virus to enter host cells. The spike glycoprotein is of 
tremendous relevance in the development of SARS-CoV-2 treatment techniques since it is the key component 
that the virus employs to bind to receptors on the host cell surface. If humans are infected with SARS-CoV-2, 
the spike protein could be used as a target for therapeutic and vaccine development [21,22]. P. aeruginosa and 
SARS-CoV-2 are dangerous diseases considering their negative consequences for human health and their ability 
to transmit from one person to another [23]. To avoid these infection relapses, new anti- P. aeruginosa and anti-
SARS-CoV-2 drugs are needed.  

Iminoguanidine is a key chemical class in drug discovery owing to its broad range of therapeutic 
potential, which include, antibacterial [24-26], antiviral [25,26], ability to recognize and separate anions from 
competitive aqueous environments [27], and biomass-based direct air capture [28]. This beneficial property of 
iminoguanidine sparks our interest in creating a tool for identifying novel iminoguanidine analogs that have 
potential as antibacterial agents. 

There is an immediate need for ways to combat the disease's increased prevalence, and counteraction 
seems a legitimate methodology. This computer-aided drug design (CADD) approach can contribute to many 
stages of the drug discovery process, notably to performing a search for active compounds by virtual screening 
[29]. Computational methods, i.e., computer-aided drug design (CADD) has been successfully applied in 
pharmacy, pharmaceutical chemistry, molecular biology, and biochemical researcher for years to fight the 
problems related to drug design, drug discovery, and drug development [30]. The current work examines the 
use of grounded quantitative structure-activity relationship (QSAR) modeling in conjunction with genetic 
approximation-multiple linear regression (GA-MLR), docking simulations, molecular dynamics simulations 
(MDs), and ADME as relevant to iminoguanidine derivatives to investigate their role as a negative catalyst 
against P. aeruginosa and SARS-CoV-2. Accordingly, this research may be practicable for the design and 
development of persisting multi-drug resistance pathogen activity. 
 
 
Experimental 
 
Methods 

A total number of 25 iminoguanidine derivatives reported by PubChem with the accession number 
AID_1315713 were collected to perform this study. The MIC50 values (minimum inhibitory concentrations) 
were converted to pMIC50 (-logMIC50) values that were utilized in the QSAR investigation as dependent 
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variables. The compound's pMIC50 values are within the QSAR prerequisite range according to Shirvania and 
Fassihi [31]. The 3D structures of all the compounds including the reference compounds were prepared using 
MarvinView Europium.6 (http://www.chemaxon.com) and their energies were minimized with the Spartan’14 
V1.1.4 PM6. The energy minimized molecules were subjected to optimization via DFT (density functional 
theory) method with B3LYP function [32,33] and 6-31G+ basic set [34] with the GAUSSIAN 09 package [35]. 
The optimized structures were imported into PaDEL-Descriptors v2.20 [36], which calculated the molecular 
descriptors for each molecule. The calculated descriptors from the PaDEL software saved in an excel 
spreadsheet were pre-treated using NEW_V-WSP version 1.2 (DTC) laboratory software to sequester highly 
correlated descriptors from the distantly related ones, thus reducing redundancy in the calculated values. The 
pre-treated descriptors saved in the text file were transferred into the QSARINS software for further analysis 
[37]. The chemical structure of the molecules and their pMIC50 values are available in Table 1. The QSARIN 
v2.2.4 software was adopted to perform a Genetic algorithm (GA) and model development. GA approach allows 
the proper selection of some exceptionally good descriptors to improve a model’s quality and predictive 
accuracy and by doing so, a multiple linear regression (MLR) is curated to obtain the additive relationship 
between biological endpoints and molecular descriptors [38]. Thus, the technique is referred to as GA-MLR. 
Before developing the 2D-QSAR model, the data set were divided into 70 % training and 30 % test by applying 
the random selection implemented in QSARINS software. 
 
Table 1. Chemical structures of iminoguanidine compounds as well as their activity levels. 

Compound No. 
N

NH2N

NH2
R1

R2

R3

 
R1 R2 R3 MIC50 

(ug/Ml) pMIC50 

1 H H Cl 10.7 1.0294 
2 H H N(CH3)2 32.5 1.5119 
3 OH H H 58.5 1.7672 
4 OCH3 H H 38.4 1.5843 
5 H H NO2 61.4 1.7882 
6 F H H 28.6 1.4564 
7 H Naphc Naphc 31.7 1.5011 
8 H Cl H 19.2 1.2833 
9 Cl H H 16.3 1.2122 

10 H H CH(CH3)2 20.6 1.3139 
11 H H OCH3 30.5 1.4843 
12 Naphc Naphc H 30.4 1.4829 
13 H H F 87.4 1.9415 
14 H H Br 19.7 1.2945 
15 H OCH2C6H6 H 25.5 1.4065 
16 Br H H 62.9 1.7987 
17 OH Br H 145 2.1614 
18 H H C6H6 34.6 1.5391 
19 H OH, OHa H 338 2.5289 
20 H H OH 443 2.6464 
21 H OH H 391 2.5922 
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22 H OCH3 H 48.6 1.6866 
23 H F H 70 1.8451 
24 H Br H 23 1.3617 
25 H Cl Cl 24.1 1.3820 

Reference compounds 

Doxycycline 
(Vibramycin) 

O

O OO O

O

OO

N

N

H HH
H H

H
H

HH

H

HH
H

H H H
H

H H

H

HH

H

H

Chloroquine 

Cl

N
N

N

H

H

H H

HHH H

H
H

H

H H
H

H

HH
H

H
H

H

H
H

H
H

H

Ruxolitnib 
N
N

N

N

N

N

H H
H

H
H

H
H
H

H H

H
HH

H

HH

H

H

Ampicillin 
N N

O

N
O

S

OO

H
H

H H
H

H
H

H
H

HH

HH
H

H

H
HH

H

2D-QSAR Model validation 
Internal and external validations of the QSAR model are carried out by using the model to forecast 

training and test data. To assess the model's validity, we calculate several parameters. To begin, the coefficients 
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of determination (𝑅𝑅2) are computed to assess the strength of the relationship between actual and predicted 
values. The slope value (k) and (𝑟𝑟2 − 𝑟𝑟02 𝑟𝑟2⁄ ) are also used to assess the model's performance. The correlation 
coefficients between actual and expected values with and without intercept are represented by the 𝑟𝑟02 and 𝑟𝑟2 
parameters, respectively. Ultimately, we compute the modified 𝑟𝑟2 (𝑟𝑟𝑚𝑚2) to show the model's predictive 
performance [39,40]. The following equations can be used to calculate the validation parameters: 

𝑅𝑅2 = 1 −
∑(𝑌𝑌 − 𝑌𝑌�)2

∑(𝑌𝑌 − 𝑌𝑌�)2
Eq. 1 

𝑟𝑟2 =
�∑(𝑌𝑌 − 𝑌𝑌�)(𝑌𝑌� − 𝑌𝑌�)�

2

∑(𝑌𝑌 − 𝑌𝑌�)2 × ∑(𝑌𝑌� − 𝑌𝑌�)2
Eq. 2 

𝑟𝑟𝑜𝑜2 = 1 −
∑(𝑌𝑌 − 𝐾𝐾 × 𝑌𝑌�)2

∑(𝑌𝑌 − 𝑌𝑌�)2
Eq. 3 

𝐾𝐾 =
∑(𝑌𝑌 × 𝑌𝑌�)
∑𝑌𝑌�2

Eq. 4 

𝑟𝑟𝑚𝑚2 =  𝑟𝑟2 × (1 −�𝑟𝑟2 − 𝑟𝑟𝑜𝑜2) Eq. 5 

Where, Y and 𝑌𝑌�  denote the actual and predicted value of pMIC50, respectively. The threshold values for all the 
parameters used in these studies were detailed according to Edache et al [41]. 

Protein generation and preparation 
Pseudomonas aeruginosa and the 2019 novel coronavirus protein sequence were downloaded from the 

NCBI database (https://www.ncbi.nlm.nih.gov/) with accession number KJJ19201 and PDB: 7E23, 
respectively. A BLAST exploration was carried out to find appropriate templates. The UPGMA algorithm [42] 
was used to infer the evolutionary history. The evolutionary distances were calculated using the Poisson 
correction method [43] and are measured in amino acid substitutions per site. Each descending clade's 
proportion of sites with at least one unambiguous base in at least one sequence is shown next to each internal 
node in the tree. This study looked at five and six different amino acid sequences of P. aeruginosa and SARS-
CoV-2 spike proteins, respectively. For each sequence pair, all unclear locations were deleted (pairwise deletion 
option). In total, there were 215 and 239 positions in the final dataset, respectively. MEGA X was used to 
undertake evolutionary analyses [44]. Pair-wise alignment of the template and query sequences were 
constructed using MODELLER v10.1 to check the results of the phylogenetic tree analysis [45-47]. For query 
and template sequences, BioEdit [48] was used to build a sequence alignment file in PIR format. Python Scripts 
were used to construct the Multiple Template Modeling (MTM) protocol from module 5 structures. With the 
help of Swiss-Pdb Viewer [49], for energy minimization, the model with the most reduced DOPE score (Discrete 
Optimized Protein Energy) was chosen. For P. aeruginosa and SARS-CoV-2 spike, the template and the predicted 
modelled structures were superimposed with RMSD values of 0.176 and 0.261, respectively (Fig. 1). 
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A B 

Fig. 1.  The modelled protein structures of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein from Modeller 
v10.1 using multiple template modeling. 

Equipment and programming 
Molegro Virtual Docker 6.0 2013 [50] and Autodock Vina with PyRx v0.8 [51] were used for docking 

simulations with core i3 windows processors. The molecular docking simulations of all compounds were 
performed with the predicted modelled crystal structure of P. aeruginosa and SARS-CoV-2. Molegro Virtual 
Docker (MVD) which was considered as one of the best and accurate docking packages were used to study the 
interactions energies between the stationary modelled proteins and the ligands. The design of the demonstrated 
proteins was created by pressing icons, and the amino acid flaws that presented as a warning were repaired. The 
protein surface and binding cavity have both been identified. After resetting the icon, the design of the 
demonstrated proteins is ready for docking simulation. The docking wizard was used to perform interactions of 
the protein-ligand and the parameters for the docking interactions were set as ten (10) runs, 50 population size, 
1500 iterations, and lastly, the maximum number of poses is 4. Next was the PyRx [51] docking simulations 
setup. The modelled proteins were prepared using PyRx v0.8 software and the docking experiments were 
subsequently accomplished using the AutoDock Vina package [52]. The network place for docking of the 
ligands against the displayed protein of P. aeruginosa was set as exhaustiveness = 8, center_x = 16.8669, 
center_y = 53.3921, center_z = -4.3156, size_x = 55.3409311867, size_y = 155.016245728, size_z = 
141.969700775, and against the modelled SARS-CoV-2 spike protein was set as center (x = -1.5643, y = 12.818, 
and, z = 12.3015), size (x = 49.2203297997, y = 44.6869613934, and, z = 51.2521103764), respectively. The 
Discovery studio 2020 client was used to visualize the outcomes of the docking simulation. 

Molecular Dynamics Simulations 
Utilizing the CHARMM-GUI web server [53], a cubic box of TIP3 water particles with an edge 

distance of 10 Å was utilized to submerge the docked complex. A 0.15M KCl counterion was utilized to 
neutralize the system. To deliver the inner strain energies of the whole system, the whole framework or system 
was exposed to 5,000 run steps of energy minimization utilizing the steepest drop integrator. The NVT 
equilibration was then performed at 303.15 K for 0.01 ns. 500,000 runs i.e., 1 ns of unrestrained isothermal 
isobar group (NPT) were performed for the production and were completed at 303.15 K, utilizing 1 atm 
(1.01325 bar) with 2 fs time steps. All computations were performed using the CHARMM36m force field [54], 
NAMD [55], and VMD [56] for representation. 
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Results and discussion 

The QSAR study was carried out to explain the multiple linear relationships between the 2D descriptors 
and the bioactivity. To explain the diversity in the bioactivity of iminoguanidine derivatives, the molecular 
descriptors (Centered Broto-Moreau autocorrelation - lag 1 / weighted by I-state (ATSC1s) and Sum of E-State 
descriptors of strength for potential hydrogen bonds of path length 7 (SHBint7) were chosen. The GA-MLR 
equation for the prediction of the bioactivity is given in equation 6: 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟓𝟓𝟓𝟓 = 𝟓𝟓.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 − 𝟓𝟓.𝟏𝟏𝟒𝟒𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒑𝒑𝟏𝟏𝟏𝟏 − 𝟓𝟓.𝟓𝟓𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏 Eq. 6 

The following are the mathematical parameters/ values of the 2D QSAR model: 
𝑅𝑅2 = 0.8445; 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 0.8238; 𝑅𝑅2-𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = 0.0207; 𝐿𝐿𝐿𝐿𝐿𝐿 = 0.0404; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = 0.1564; 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = 

0.1268; 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = 0.4402; 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = 0.9157; 𝑅𝑅 = 0.1713; 𝐿𝐿 = 40.7393 

𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2  = 0.7652; 𝑅𝑅2 − 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2  = 0.0793; 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 0.1922; 𝑅𝑅𝑀𝑀𝑅𝑅𝑐𝑐𝑐𝑐 = 0.1558; 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐 = 0.6647; 𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 
= 0.8685; 𝑅𝑅𝑌𝑌𝑌𝑌𝑐𝑐𝑡𝑡2  = 0.1169; 𝑄𝑄𝑌𝑌𝑌𝑌𝑐𝑐𝑡𝑡2  = -0.3234; 𝑅𝑅𝑌𝑌𝑡𝑡𝑡𝑡𝑎𝑎2  = 0.1180; 𝑄𝑄𝑌𝑌𝑡𝑡𝑡𝑡𝑎𝑎2  = -0.3188 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡 = 0.4930; 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡 = 0.3954; 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡PRESS test = 1.4585; 𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡2  = 0.7763; 𝑄𝑄2 − 𝐿𝐿1 = -
0.1334; 𝑄𝑄2 − 𝐿𝐿2 = -0.9302; 𝑄𝑄2 − 𝐿𝐿3 = -0.5455; 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡 = 0.6663; 𝑟𝑟𝑚𝑚2  delta = 0.6164. 

The developed model represents a linear combination of two descriptors. One of them belongs to 
autocorrelation descriptor (ATSC1s) and electro-topological state atom type descriptor (SHBint7).  The model 
in (equation 6) indicates that the inhibitory activity of compounds against the strain of P. aeruginosa depends 
on autocorrelation and topological state properties. Table 2 shows the p-values, variance inflation factor (VIF), 
and the mean effect (MF) for the variables used in the model proposed. 

Table 2. The validation parameters, variance inflation factor, and mean effect. 

Variable Coeff. Std. coeff. Std. err. (+/-) Co. 
int. 95% p-value VIF MF 

Intercept 0.4444 0.1373 0.2926 0.0052 
ATSC1s -0.1470 -1.0263 0.0163 0.0347 0.0000 1.25 1.068 
SHBint7 -0.0332 -0.4710 0.0080 0.0171 0.0008 1.25 -0.068

Internal and external validation was used to estimate the significance and to ensure the validity of the 
models [57]. The model disclosed a cross-validation coefficient (𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2 ) value of 0.7652 and the difference 
between 𝑅𝑅2 and 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2  is very small (less than 0.01) that indicates the consistency and stability of the model. 
The mean absolute error (𝑅𝑅𝑀𝑀𝑅𝑅) measurement of the model accesses the degree of the prediction error. For the 
validation set, an 𝑅𝑅𝑀𝑀𝑅𝑅𝑐𝑐𝑐𝑐 of 0.16, and PRESS of 0.66 is obtained signifying an improved prediction. The 
certainty of the model was asserted by a test set, which gave a determination correction coefficient (𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡2 ) value 
of 0.7763. The predicted values of the bioactivity of the training set and test set of the model are introduced in 
Table 3. Table 3 constitutes the computed values of the 2 descriptors. 

Table 3. Observed, predicted biological activity, and HAT of the training and predicted set of compounds 
against P. aeruginosa. 

ID Name Status Observed act. Pred. by model eq. HAT i/i (h*=0.5000) 
1 2 Prediction 1.5119 1.3261 0.1013 
2 3 Training 1.7672 1.7977 0.5221 
3 4 Training 1.5843 1.2615 0.1377 
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4 5 Training 1.7882 2.012 0.1304 
5 6 Training 1.4564 1.5377 0.4325 
6 7 Training 1.5011 1.4094 0.0839 
7 8 Training 1.2833 1.4373 0.0793 
8 9 Training 1.2122 1.3869 0.081 
9 10 Training 1.3139 1.2556 0.1206 

10 11 Training 1.4843 1.4962 0.0718 
11 12 Training 1.4829 1.3931 0.0868 
12 13 Prediction 1.9415 2.1189 0.1704 
13 14 Training 1.2945 1.4085 0.084 
14 15 Training 1.4065 1.4088 0.0839 
15 16 Prediction 1.7987 1.3922 0.087 
16 17 Prediction 2.1614 1.7301 0.4965 
17 18 Prediction 1.5391 1.3749 0.0904 
18 19 Prediction 2.5289 3.5361 1.6041 
19 20 Training 2.6464 2.4252 0.3379 
20 21 Training 2.5922 2.4252 0.3379 
21 22 Training 1.6866 1.4962 0.0718 
22 23 Training 1.8451 2.1189 0.1704 
23 24 Training 1.3617 1.4085 0.084 
24 25 Training 1.382 1.4102 0.0837 

To additionally affirm whether or not there is a multicollinearity issue in the revealed model as 
remarked by Bolboac and Lorentz [58], the VIF values of these descriptors in the preparation (training) set were 
registered and gotten to be under 5 demonstrating the wellness of the announced model. The descriptors in the 
revealed model were measurably huge and the symmetrical idea of the descriptors was affirmed, i.e., the model 
is great, liberated from multicollinearity issue, and satisfactory since no descriptor has its VIF values more 
noteworthy than 5 (If a model has a descriptor with VIF esteem more prominent than 5, the model isn't 
acknowledged, thusly, should be re-evaluated) [59]. The importance and commitment of a descriptor 
concerning other descriptors in the model were determined by the mean effect (MF) values. The positive sign 
of Centered Broto-Moreau autocorrelation - lag 1 / weighted by I-state (ATSC1s), indicates that the molecule 
of the compound should have larger electronic properties (polarizability and charges as weights) in the molecule 
will increase the biological activity. This descriptor showed the highest significance than the other descriptors 
according to their p-value. The negative sign of the Sum of E-State descriptors of strength for potential hydrogen 
bonds of path length 7 (SHBint7) that account for the intrinsic electronic state of the atom as perturbed by the 
electronic influence of all other atoms in the molecule, shows that, the lesser values of these descriptor attributed 
to the compounds with greater bioactivity values. 

The fitting criteria 𝑅𝑅2, 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿2 , 𝑅𝑅𝑡𝑡𝑡𝑡𝑌𝑌𝑡𝑡2 , CCC and relatively low values of the errors represented by: LOF, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅train, 𝑅𝑅𝑀𝑀𝑅𝑅train, 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡rain, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅cv, 𝑅𝑅𝑀𝑀𝑅𝑅cv, 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅cv, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅test, and 𝑅𝑅𝑀𝑀𝑅𝑅test show that there is a strong 
linkage between the observed bioactivity with the predicted by the built model as shown in Fig. S1 of 
Supplementary material, and it also confirmed the robustness, goodness of fit and predictive ability of the 
model. The model predicted is correct not only for the training set, but also for the test set meanwhile the error 
values (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅train, 𝑅𝑅𝑀𝑀𝑅𝑅train, 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡rain, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅cv, 𝑅𝑅𝑀𝑀𝑅𝑅cv, 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅cv, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅test, and 𝑅𝑅𝑀𝑀𝑅𝑅test) are at the same level 
and there are no significant large residual values. The observed activity is plotted against the residuals in Fig. 
S2 since the scatter plot were all scattered within the baseline shows that the model is free from systematic 
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error. To assess the resilience of the derived models, we used Y-randomization [38, 57, 59] to confirm that the 
correlations between the bioactivity and descriptors are not by chance. The average value of the Y-
randomization test is 𝑅𝑅𝑌𝑌𝑌𝑌𝑐𝑐𝑡𝑡2  = 0.1169; 𝑄𝑄𝑌𝑌𝑌𝑌𝑐𝑐𝑡𝑡2  = -0.3234; 𝑅𝑅𝑌𝑌𝑡𝑡𝑡𝑡𝑎𝑎2  = 0.1180; and 𝑄𝑄𝑌𝑌𝑡𝑡𝑡𝑡𝑎𝑎2  = -0.3188. The outcomes of 
the Y-scrambling for the repetitions are shown in Fig. S3. It was found that all randomization or scrambling 
values of the random models are lesser than the innovative ones and the intercepts are inside the acceptable 
values recommended in the literature [60]. This result shows that the obtained model is not by chance. The 
applicability domains (AD) are crucial because they are specifically sought in the OECD's validation processes 
[61]. The AD of this model was assessed by a leverage analysis which is based on the standardized residuals' 
variation. The standard deviation (δ) and the leverage value (h*) are set to ±2.5 and 0.5, respectively.  We find 
the presence of outliers as shown in Fig. S4. The response outlier is a chemical structure that is below or above 
the standard deviation of ±2.5. While the structurally influential outlier is a chemical structure that is outside 
the leverage value. Compound 17 was found to have a standardized residual more than the standard deviation 
of +2.5 is a response outlier.  The compounds number 3 of the training set with its leverage value reasonably 
higher than the threshold value (h* = 0.5) and compound number 19 of the test set has its h* far greater than 
the limit value of 0.5 are structurally influential outlier (Fig. S4). Insubria plot [62] was used to evaluate the 
position of the molecules lacking experimental response. The Insubria plot (Fig. S5) is similar to the Williams 
plot (Fig. S4). The Insubria plot is also confirmed that compounds 3 and 19 are a structural influential outlier. 
As a result of our 2D-QSAR model, we can create novel compounds with higher anti-P aeruginosa activity. 

Phylogenetic tree and Homology modeling 
The sequence of P. aeruginosa and SARS-CoV-2 spike glycoproteins were obtained from the NCBI 

(National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/) with accession 
number KJJ19201.1 and PDB 7E23, respectively, were used to BLASTp search against the protein data bank 
to select the template structures. The query sequence and the BLAST template structures were first analyzed 
through the MEGA-X [63] software to investigate the phylogenetic relationship based on the test UPGMA 
(Unweighted pair-group method with arithmetic) method as shown in Fig. 2. The phylogenetic tree which is 
obtained by MUSCLE [64] shows the evolutionary relationship between the proteins sequences as it was a 
rooted tree. Phylogenetic analysis demonstrated clear sequestration of P. aeruginosa and SARS-CoV-2 in two 
different biological groups and these biological groups were also divided into subgroups. All the biological 
groups are grouped according to their protein sequence similarity. The P. aeruginosa query sequence (accession 
number KJJ19201.1) shows high similarity to PDB 4PS6 and 1UUZ, respectively as shown in Fig. 2(A). The 
phylogenetic sequence analysis of the spike protein of SARS-CoV-2 (PDB: 7E23) and the other five templates 
shows a close similarity (Fig. 2(B)). Concerning overall sequence similarity PDB 7MZF spike protein S1 has 
the highest similarity to PDB 7E23. The chain A inhibitors of vertebrate lysozyme (PDB 4PS6 and PDB 1UUZ) 
and spike protein S1 (PDB 7MZF) have very close relationships to the query sequence, respectively. 

A 

http://www.ncbi.nlm.nih.gov/
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B 
Fig. 2. Phylogenetic analysis of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein homologs were 
constructed by the UPGMA method using the MEGA X program. 

Further analysis using MODELLER 10.1 was performed on the query sequence and the template 
sequences structures to confirm the phylogenetic tree analysis and a better insight into their protein structure 
similarity. According to the result malign3D command implemented in MODELLER 10.1, the tree diagram 
calculates a weight pair group average clustering on a distance matrix (Fig. 3). Out of the template structure, 
the best homologous structure belonged to an inhibitor of vertebrate lysozyme (PDB: 4PS6) (Fig. 3(A)) and 
spike protein S1 (PDB: 7mzf) (Fig. 3(B)) because of its similarity and high resolution with the query structure 
was selected for homology modeling. The results obtained thereof confound to the phylogenetic analysis. The 
selected PDB was used as a template structure for the construction of the P. aeruginosa and SARS-CoV-2 spike 
protein, respectively. Pseudomonas aeruginosa, with the accession number of KJJ19201.1, has 199 amino acids 
in its protein sequence, while SARS-CoV-2 spike protein S1with PDB code 7E23 has 196. The Pseudomonas 
aeruginosa (PDB 4PS6) and SARS-CoV-2 spike protein S1 (PDB code 7MZF) were selected as the template based 
on the phylogenetic tree analysis and dendrogram command using the align2d script implemented in MODELLER. 
An alignment of Pseudomonas aeruginosa (accession number of KJJ19201.1) and SARS-CoV-2 spike protein S1with 
PDB code 7E23 with the template sequences are presented in Fig. 4. The MODELLER constructed five (5) different 
structure modelled proteins. The receptor generated by MODELLER was ranked and scored using discrete optimized 
protein energy (DOPE) score (Data presented in Table 3 and 4). The top one out of 5 models with the lowest DOPE 
scores were selected and assessed using ERRAT, VERIFY3D, and Ramachandran plots. 

We perform energy minimization to the assessed receptors to remove side chains and later use it in the 
molecular docking and MD simulations. 
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A 

B 
Fig. 3. The weighted pair-group matrix of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein homologs 
were constructed by the modeller program. 

_aln.pos  10  20  30  40  50  60 
4PS6A     -------------------------------------------------------------------G 
qseq 
MPVIRRSMELPVDSELVAVVPFQAASGGHRRIDCFHFTRSKEITMNGVSRLLSLALLGAALHWAP
AQA 
 _consrvd 

 _aln.p   70  80  90  100  110  120  130 
4PS6A 
EEQPRLFELLGQPGYKATWHAMFKGESDVPKWVSDASGPSSPSTSLSLEGQPYVLANSCKPHDCG
NNR 
qseq 
EEQPRLFELLGQPGYKATWHAMFKGESDVPKWVSDASGPSSPSTSLSLEGQPYVLANSCKPHDCG
NNR 
 _consrvd ******************************************************************** 

 _aln.pos  140       150       160       170       180       190 
4PS6A 
LLVAFRGDKSAAYGLQVSLPDEPAEVMQTPSKYATYRWYGEPSRQVRELLMKQLESDPNWK 
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qseq 
LLVAFRGDKSAAYGLQVSLPDEPAEVMQTPSKYATYRWYGEPSRQVRELLMKQLESDPNWK 
 _consrvd ************************************************************* 

A 
_aln.pos  10  20  30  40  50  60 
7mzfA -
NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYAD
SF 
qseq 
TNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYA
DSF 
 _consrvd  ******************************************************************* 

 _aln.p   70  80  90  100  110  120  130 
7mzfA 
VIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFE
RDI 
qseq 
VIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFE
RDI 
 _consrvd ******************************************************************** 

 _aln.pos  140       150       160       170       180       190 
7mzfA 
STEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPGS 
qseq      STEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCG--- 
 _consrvd ********************************************************** 
B 

Fig. 4. Pairwise sequence alignment between the template and the query (A) and putative inhibitor of 
vertebrate lysozyme [Pseudomonas aeruginosa], (B) chain A, Spike protein S1 [severe acute respiratory 
syndrome coronavirus 2]. 

Model number two (PA-model02.pdb) and model number one (CoV-model01.pdb) having lower 
DOPE scores as presented in Table 4 and Table 5, respectively were considered as the best model of P. 
aeruginosa and SARS-CoV-2. 

Table 4. Comparative analysis of five models' DOPE scores predicted by modeller. 
Filename molpdf DOPE score GA341 score 

PA-model01.pdb 946.82159 -15805.88770 1.00000 
PA-model02.pdb 886.59521 -15917.49902 1.00000 
PA-model03.pdb 877.72742 -15809.07910 1.00000 
PA-model04.pdb 931.51996 -15808.23438 1.00000 
PA-model05.pdb 914.30719 -15800.19141 1.00000 
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Table 5. A study comparing the DOPE scores of five models predicted by the modeller. 
Filename molpdf DOPE score GA341 score 

CoV-model01.pdb 1122.96790 22118.33008 1.00000 
CoV-model 02.pdb 1048.29150 -21991.14258 1.00000 
CoV-model 03.pdb 978.01141 -22080.57617 1.00000 
CoV-model 04.pdb 1034.12805 -22053.22070 1.00000 
CoV-model 05.pdb 1049.48303 -22097.23047 1.00000 

The crystal structures of Pseudomonas aeruginosa and SARS-CoV-2 were predicted, polished, and 
validated. The final predicted structure of P. aeruginosa protein has a modeller objective (molpdf) score of 886.59521, 
genetic algorithm 342 (GA341) score of 1.0000, and the discrete optimized protein energy (DOPE) score of -
15917.49902 was picked out. The modelled crystal structures SARS-CoV-2 spike protein S1 has a molpdf score of 
1122.96790, GA341 score of 1.0000, and a DOPE score of -22118.33008 was also picked out. Following the 
sequence alignment, the DOPE score profile was generated using MODELLER's "assess dope" function to give an 
insight into the quality of input alignment (Fig. 5). Fig. 5 shows that the DOPE score profile of the modelled (query) 
and template proteins meet over a wide range of residues, and the results suggest no problematic locations. 

A 

B 
Fig. 5. The DOPE score visibility of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein incurred from 
Modeller software. 
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Validity of the structures analyzed for the P. aeruginosa receptor by the Ramachandran plot shows 
94 % residues residing in most favored regions, 4.8 % in the additional allowed region, and 0.6 % in the 
generously allowed region. Only one residue was settled in the disallowed region, which constituted 0.6 % of 
the total protein, which constituted a good quality of the predicted model (Fig. 6). Other tests, such as Verify 
3D and ERRAT also known as “overall quality factor”, were used to ensure the quality of the revised models. 
For non-bonded atomic interactions, the overall quality factor with larger scores indicates higher quality [65]. 
In general, a range of greater than 50 (> 50) indicates a high-quality model [66]. In this research, the ERRAT 
score for predicted modelled P. aeruginosa protein has an overall quality factor of 83.582 % (Fig. 7). Therefore, 
this confirmed that modelled putative inhibitor of vertebrate lysozyme pseudomonas aeruginosa protein has a 
high resolution and quality protein models. Verify-3D score profile access the model's quality. The Verify 3D 
profile of the modelled protein is shown in Fig. 8, and residues with an averaged 3D-1D score larger than zero 
are regarded as reliable. Some of the residues in the modelled protein have a computability score that is greater 
than zero. It was discovered that the structurally and functionally significant residues in the modelled potential 
inhibitor of vertebrate lysozyme pseudomonas aeruginosa protein had a score ranging from 0.30-0.60, 
indicating that the model's quality is comparable to that of high-resolution crystal structures. 

Fig. 6. Ramachandran plot calculation for 3D model of P. aeruginosa. 

Fig. 7. ERRAT gave a quality factor of 83.582 % to the modelled P. aeruginosa protein structure. 



Article J. Mex. Chem. Soc. 2022, 66(4)
Regular Issue 

©2022, Sociedad Química de México 
ISSN-e 2594-0317 

528 

Fig. 8. Verify 3D score diagram validating the modelled P. aeruginosa protein. 

Ramachandran plot analysis was carried out on the modelled SARS-CoV-2 spike protein showed 
91.1 % residues residing in highly favored regions, 8.9 % in additional allowed regions, 0.0 % residues in 
generously allowed and disallowed regions, respectively (Fig. 9). This also validates that the modelled crystal 
structure is a good quality model. The quantity of the structural error at each amino acid residue in the 3D 
structural model was given by the ERRAT plot. The overall quality factor of the computed model was 79.032 % 
(Fig. 10). Also, the Verify3D plot of the SARS-CoV-2 modelled spike protein (Fig. 11) was obtained for the 
structure validation and it showed as PASS. Verify-3D ratings near 1.0 correspond to scores that would be 
expected for a legitimate protein of similar size. It was also discovered that more than 90 % of the residues had 
a score of more than 0.2, implying that more than 90 % of the residues were complemented by the 1D-3D 
model, implying that the predicted model's quality is adequate. 

Fig. 9. Ramachandran plot computation for a 3D model of SARS-CoV-2 spike protein S1. 
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Fig. 10. ERRAT gave a quality factor of 79.032 % to the modelled SARS-CoV-2 spike protein structure. 

Fig. 11. Verify 3D score diagram validating the modelled SARS-CoV-2 spike protein. 

Molecular Docking Results 
Rating of docking simulation methodological analysis 

At first, the Molegro virtual docker (MVD) and AutoDock Vina programs estimated with PyRx were 
selected to carry out a docking-based virtual screening approach. Both Scoring Functions were supplied to 
select the best ligand against P. aeruginosa and SARS-CoV-2. 

Molecular docking simulation is of two types; namely the oriented docking simulation and the blind 
docking simulation [67,68]. Blind molecular docking simulation is a docking procedure in which the position 
of the enzyme's active site is unknown, and the grid center of attention used during grid box determination is 
not unique to a specific area but is applied throughout the entire enzyme area. The grid box was specifically 
resolved after orienting docking by establishing the position of the enzyme active site. Because the active site 
region has been established, oriented docking was used in this study (using Melogro Virtual Docker). In this 
case, an oriental docking simulation was carried out. The molecular docking simulation of 25 iminoguanidine 
derivatives, against modelled proteins Pseudomonas aeruginosa and SARS-CoV-2 Spike protein, were 
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performed using MVD software. The modelled protein was taken as the substrate for molecular docking. The 
substrate had only three cavities. From the three (3) predicted cavities the one with the highest volume was 
picked for molecular docking simulations. The cavity with volumes 48.64 Å3 (Fig. 12) and 11.78 Å3 (Fig. 13) 
are used for docking against P. aeruginosa and SARS-CoV-2, respectively. The MolDock score [69] was picked 
out for rating the inhibitor poses, and for all the modelled proteins docking executed here, the poses picked out 
as the best were those with the most prominent MolDock score. The MolDock score of all the ligands including 
the reference drugs ranges from -125.553 kcal/mol to 7320.88 kcal/mol as presented in Table 6. The reference 
drug (Ruxolitinib) has the highest negative MolDock score of -125.553 kcal/mol and -117.237 kcal/mol, 
followed by compound 15 with -117.489 and -102.85 kcal/mol against P. aeruginosa and SARS-CoV-2 Spike 
protein, respectively. 

Fig. 12. Modelled protein of potential inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa] with 
electrostatic surface and active site cavity (green grid). 

Fig. 13. The electrostatic surface and active site cavity (green grid) of modelled protein of SARS-CoV-2 Spike 
protein S1. 
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Table 6. The docking energies of Pseudomonas aeruginosa and SARS-CoV-2. 

Compound 
Number 

Putative inhibitor of vertebrate lysozyme 
[Pseudomonas aeruginosa] SARS-CoV-2 Spike protein S1 

MolDock Score Rerank 
Score HBond MolDock Score Rerank 

Score HBond 

1 -70.1638 -61.8064 -2.063 -68.012 -52.3464 -6.938
2 -78.6419 -65.4992 -0.1895 -74.8674 -63.0005 -4.2532
3 -78.0857 -62.122 -4.7344 -70.0071 -57.925 -7.4733
4 -74.7886 -62.1973 -1.0691 -75.2023 -63.9325 -5.7075
5 -75.7968 -69.6859 -2.2375 -78.1734 -71.7748 -10.972
6 -76.4574 -65.8232 -0.8352 -74.2074 -65.5021 -6.5918
7 -86.7011 -76.9983 -1.4985 -78.6897 -68.0336 -0.4485
8 -77.9807 -66.1488 -0.2075 -63.489 -42.3824 -4.0915
9 -77.39 -63.7478 -2.3958 -76.7554 -65.5159 -7.1415

10 -81.445 -62.382 -2.1289 -78.2765 -68.2709 -1.1466
11 -77.9612 -65.2889 0 -76.3297 -66.2211 -4.8914
12 -87.3695 -72.0002 -1.0544 -85.7218 -74.148 -6.5194
13 -73.5418 -63.5228 -0.6091 -65.7669 -42.6207 -4.1196
14 -70.2995 -62.085 -1.7337 -65.2352 -41.5776 -4.1817
15 -117.489 -94.1851 -2.9057 -102.85 -89.8918 -7.9081
16 -74.9906 -63.4911 -3.4383 -76.7682 -65.6931 -7.1996
17 -76.9665 -63.8531 -1.178 -67.7912 -61.0345 -8.9551
18 -86.185 -71.2461 -0.1287 -81.353 -61.7442 -2.5
19 -82.6353 -69.5908 -6.5194 -71.7263 -49.8586 -6.2159
20 -73.5011 -60.3293 -4.3336 -71.293 -61.5842 -6.1265
21 -75.3018 -62.8724 -5.2574 -77.3631 -66.4571 -7.1931
22 -84.3353 -71.885 -0.5039 -84.2272 -71.6465 -8.0651
23 -77.2196 -63.3773 -1.2512 -80.6143 -68.8821 -7.3401
24 -75.1741 -62.151 -0.0435 -80.6 -68.6933 -6.7389
25 -74.903 -64.3062 -1.2884 -68.427 -43.4749 -4.1837

Chloroquine -111.536 -82.6976 -1.1128 -101.402 -72.2266 -4.5758
Ampicillin -114.864 -95.187 -8.8215 -102.865 -81.7504 -4.5601
Vibramycin 3239.53 565.867 -0.6755 3342.46 660.603 -2.3881
Ruxolitnib -125.553 -97.9409 -2.3851 -117.237 -88.9727 -6.1061

The reference drug (Ruxolitinib) against the protein of putative inhibitor of vertebrate lysozyme 
(Pseudomonas aeruginosa) formed two hydrogen bond interactions with Cys132 and Asp193 (Fig. 14(A)). Next 
is compound 15 which also formed two hydrogen bond interactions with the modelled protein first with Asn125, 
secondly with Gln189 (Fig. 14(B)). Against the modelled protein of SARS-CoV-2 Spike protein S1, the 
reference drug Ruxolitinib with the highest negative MolDock score of -117.237 kcal/mol formed hydrogen 
bond interactions with Lys126, Asn149, and Cys148, respectively (Fig. 15(A)). In Fig. 15(B), compound 15 



Article J. Mex. Chem. Soc. 2022, 66(4)
Regular Issue 

©2022, Sociedad Química de México 
ISSN-e 2594-0317 

532 

formed five (5) hydrogen bond interactions with the same modelled proteins. The five hydrogen bond 
interactions of compound 15 are with Arg125, Lys126, and Ser127, respectively. 

A B 
Fig. 14. Hydrogen bond interactions between (A) Ruxolitinib and (B) compound 15 with modelled protein of 
putative inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa]. 

A B 
Fig. 15. Hydrogen bond interactions between (A) Ruxolitinib and (B) compound 15 with modelled protein of 
SARS-CoV-2 Spike protein S1. 

Again, blind molecular docking simulations were carried out for all 25 compounds including the 
reference compounds with PyRx v0.8 software. In the molecular docking simulations with PyRx, we make use 
of the modelled proteins as the target. The binding affinity values obtained as a result of the molecular docking 
analyses are shown in Table 7. The negative value of binding affinity as presented in Table 6 suggests the 
stability of the protein-ligand complex. From the table, the reference compound “Vibramycin” has the highest 
binding affinity value of -7.4 kcal/mol for P. aeruginosa and SARS-CoV-2, respectively. The reference 
compound (Vibramycin) interacted with P. aeruginosa modelled protein structure (Fig. 16) showed the 
corresponding amino acids such as aspartic acid, phenylalanine, glycine, glutamine, tyrosine, and so on. The 
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docking of Vibramycin forms some hydrogen bonds and electrostatic interactions with the modelled protein. 
Vibramycin is observed to show three (3) hydrogen bond interactions with Ser192 (3.87 Å), Gln189 (5.33 Å), 
and Gln189 (4.27 Å) against P. aeruginosa modelled protein (Fig. 16(A)). Vibramycin exhibits three 
electrostatic interactions, one unfavorable acceptor-acceptor interaction, one carbon-hydrogen bond with 
Pro131 (6.23 Å), and two conventional hydrogen bond interactions with Ser182 (3.87 Å) and Glu184 (4.79 Å), 
respectively against SARS-CoV-2 protein (Fig. 16(B)). 

Table 7. Autodock-Vina predicted binding affinity (kcal/mol) of P. aeruginosa and SARS-CoV-2 spike protein. 

Ligand P. aeruginosa SARS-CoV-2 
Binding Affinity Binding Affinity 

1 -5.4 -5.8
2 -5.7 -6.3
3 -6.2 -6.2
4 -6.4 -6.2
5 -5.6 -6.2
6 -6.2 -6.1
7 -6.9 -6.9
8 -5.5 -6
9 -6.3 -6.1

10 -5.7 -6.2
11 -5.4 -6.4
12 -6.3 -6.6
13 -5.6 -6.3
14 -5.2 -5.9
15 -5.9 -7.2
16 -6.1 -6
17 -5.9 -6
18 -6.6 -7.1
19 -5.8 -6.3
20 -5.6 -6.3
21 -6.8 -6.2
22 -6 -6.3
23 -5.6 -5.9
24 -5.3 -6.4
25 -5.7 -6.1

Chloroquine -4.1 -4.8
Ruxolitnib -5.9 -7.0

Vibramycin -7.4 -7.4
Ampicillin -5.9 -6.7
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A B 
Fig. 16. The 2D illustrations of interactions between Vibramycin and the modelled (A) P. aeruginosa and (B) 
SARS-CoV-2 spike protein receptors. 

Compounds 7 and 15 were selected based on their remarkable binding affinity of -6.9 and -7.2 kcal/mol 
for P. aeruginosa and SARS-CoV-2 spike protein receptors respectively compared to the reference compound’s 
-7.4 kcal/ mol. The molecular docking contact modes for compounds 7 and 15 are shown in Figures 17 and 18,
respectively. The molecular docking interaction of compound 7 with the active site of modelled P. aeruginosa
protein reveals two conventional hydrogen bonds between the hydrogen atoms of compound 7 and the amino
acid Ser109 with distances of 3.45 and 4.04, respectively, and one carbon-hydrogen bond between the carbon
atom and the amino acid Pro107 with a distance of 5.47. The hydrophobic interaction was performed between
one of the naphthalene ring and amino acids Arg136 (5.84 Å) and Cys127 (5.04 Å). Moreover, the electrostatic
interaction is observed between one of the naphthalene rings and the amino acids Asp193 (5.94 Å) and Arg136
(5.48 Å).

Fig. 17. The 3D and 2D representations of interactions between compound 7 and modelled P. aeruginosa 
receptor. 
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Fig. 18. The 3D and 2D representations of interactions between compound 15 and modelled SARS-CoV-2 
spike protein receptor. 

Nevertheless, compound 15 forms two conventional hydrogen bonds with amino acid Asn11 (3.60 and 
3.95 Å), one pi-donor hydrogen bond with Trp104 (3.95 Å) with the active site of modelled SARS-CoV-2 spike 
protein. The hydrophobic interaction was performed between one of the benzyloxy and toluene rings with amino 
acids Leu36 (5.13 Å) and Val35 (4.78 Å), respectively. Furthermore, the electrostatic interaction is observed 
between hydrogen and the amino acid Trp104 (4.13 Å). The hydrogen bonds, the hydrophobic interactions, and 
the electrostatic interactions in the complexes showed that compounds 7 and 15 of iminoguanidine derivatives 
are most active against modelled P. aeruginosa receptor and modelled SARS-CoV-2 spike protein, respectively. 

Lipinski's rule of five aids [70] in the differentiation of drug-like and non-drug-like compounds. It 
forecasts a high likelihood of success or failure due to drug-likeness for compounds that meet two or more of 
the rules stated in Table 7. The chemical structure of compounds 7 and 15 was submitted to the MolSoft server 
in SMILE format, to guess the in silico pharmacokinetic parameters. Based on these properties, we investigated 
how our lead ligands met the Lipinski rule of five (5). The table (Table 8) shows the properties of compounds 
7 and 15 in which both of the compounds fulfilled the Lipinski rule of 5. The MollogS value is less than or 
equal to -4.0. These compounds have a low MolLogS value, indicating that they are difficult to dissolve in 
water [71]. The aromatic and non-polar fragments around the chemical structures are most likely to blame. 
Despite this, their intestinal absorption is high, exceeding 90 %. 

Table 8. The pharmacokinetic parameter of compounds 7 and 15 using MolSoft server. 
Compound 7 values Compound 15 values 

Molecular formula C12 H14 N4 Molecular formula C15 H18 N4 O 
Mol. weight (≤ 500 D) 214.12 Mol. weight (≤ 500 D) 270.15 
Number of HBA (≤10) 2 Number of HBA (≤10) 3 
Number of HBD (≤ 5) 5 Number of HBD (≤ 5) 5 

MolLogP (≤ 5) 1.24 MolLogP (≤ 5) 1.42 
MolLogS -1.96 MolLogS -1.48

MolPSA (≤ 140) 64.39 A2 MolPSA (≤ 140) 71.89 A2 
MolVol 199.97 A3 MolVol 255.68 A3 

PKA of most 
Basic/Acidic group 11.82 / 16.27 PKA of most Basic/Acidic 

group 11.82/ 16.29 

BBB score 3.06 BBB score 3.00 
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The leads in Fig. 19(A) and 19(B) showed that these molecules display ADME profile within the 
desired range as presented in Table 7, and therefore the values of these parameters shed light on their drug-
likeness features, which could set up an essential starting point to encourage experimental procedures. 

Fig. 19. The drug-likeness profile of (A) compound 7 (B) compound 15. 

Molecular dynamics (MD) simulations 
The study of molecular dynamics simulation in the modelled SARS-CoV-2 spike protein was being 

used to figure out how flexible is docked compound 15, and this evaluation was lasted up to 1 ns. To compute 
these RMSD, RMSF, and SASA values we used the VMD plugin with a probe radius set to 1.4 Å. Other 
thermodynamic parameters investigated are the total energy, potential energy, and kinetic energy of the docked 
protein-ligand complex [71]. To understand the structural aberrations across the simulation track, the RMSD of 
the c-alpha atoms in the protein-ligand complex was analyzed. The RMSD value of the complex increased at 
the start of the simulation, as seen in Fig. 20(A). The protein-ligand complex then stabilized at 400 and 500 ps, 
before rapidly increasing from 600 to 800 ps. The protein-ligand complex remained stable until the simulation's 
final phase, 1 ns. To estimate the amino acid residue flexibility, the RMSF of the protein-ligand complex was 
calculated. The majority of residues had RMSF values < 2.0 Å, as seen in Fig. 20(B). The presence of peaks 
indicates the areas fluctuate the most during the simulation. The fluctuations observed are around 1.9 Å (600 
ps) and less around 0.4 Å (1 ns) which signifies the stability of the system. This RMSF profile indicates a 
complex that is less flexible and inflexible. The surface area of a group that is accessible to a solvent probe is 
known as the solvent-accessible surface area (SASA) [or temporarily accessible surface area (ASA)]. Protein 
folding and stability have always been determined by the solvent-accessible surface area (SASA).   The SASA 
trend in the predicted protein-ligand complex was higher, indicating an increase in surface volume. Nonetheless, 
this complex had a high number of SASA deviations, indicating that the protein's surface area was changing 
significantly. The SASA value for the un-simulated protein-ligand complex has a lower value in comparison 
with the simulated protein-ligand (Table 9) which indicates that the simulated protein-ligand complex is more 
exposed to water and also increases in cavities. The SASA profile in Fig. 20(C) confirmed the claim. 

A B 
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A 

B 

C 

Fig. 20. The molecular dynamics simulation of the complexes. (A) Root mean square deviation (RMSD), (B) 
Root mean square fluctuations of the amino acid residues (RMSF), and (C) Solvent accessible surface area 
(SASA). 
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Table 9. The solvent-accessible surface area of un-simulated and simulated complexes. 
The surface area of SARS-CoV-2 spike protein 

Number of non-HOH non-H atoms=1537 
Probe radius=1.40 

TOTAL, ASA=10006.94 TOTAL, MSA=8706.50 
Polar ASA=4481.68 Non-polar ASA=5525.26 
Polar MSA=3401.84 Non-polar MSA=5304.67 

Total backbone ASA=2134.02 Total backbone MSA=2404.09 
Polar backbone ASA=1414.88 Non-polar backbone ASA=719.14 
Polar backbone MSA=1449.43 Non-polar backbone MSA=954.66 
Polar side chain ASA=3066.80 Non-polar side chain ASA=4806.12 
Polar side chain MSA=1952.40 Non-polar side chain MSA=4350.01 

+charge ASA=690.04 -charge ASA=450.70
+charge MSA=484.54 -charge MSA=263.31

Structure contains 10 cavities A 
The surface area of SARS-CoV-2 spike protein after 1 nanosecond 
Number of non-HOH non-H atoms=1733 

Probe radius=1.40 
TOTAL, ASA=11687.42 TOTAL, MSA=0.00 

Polar ASA=6785.50 Non-polar ASA=4901.92 
Polar MSA=0.00 Non-polar MSA=0.00 

Total backbone ASA=2325.91 Total backbone MSA=0.00 
Polar backbone ASA=1612.36 Non-polar backbone ASA=713.55 

Polar backbone MSA=0.00 Non-polar backbone MSA=0.00 
Polar side chain ASA=5173.14 Non-polar side chain ASA=4188.37 

Polar side chain MSA=0.00 Non-polar side chain MSA=0.00 
+charge ASA=831.32 -charge ASA=575.06
+charge MSA=0.00 -charge MSA=0.00

Structure contains 13 cavities B 
A = the un-simulated protein-ligand complex; B = the simulated protein-ligand complex. 

The MD simulations of the 10 frames and the hydrogen bond information of these 10 confirmations 
are listed in Fig. S6. From the figures, conformation 3, 5, 8, and 9 has 4, 2, 2, and 2 hydrogen bonds, 
respectively. The amino acids that appear more as conventional hydrogen bond and carbon-hydrogen bond 
interactions are Ser41 and Asp 32, respectively. From conformation 1 to 10, amino acid residue Ser41 appears 
in all the interactions either as hydrogen bond or van der Waals interactions to the ligand. After 1 ns MD 
simulation (the last confirmation “10”), the residue interactions and protein-ligand 2D contact contour map 
show that van der Waals and hydrophobic interactions were crucial contributions for the stability of the hit drug. 

Fig. S7 depicts a change in total energy versus time in 1 ns of molecular dynamics simulation, which 
displays a slight fluctuation throughout the 1 ns. It also suggested that when the protein was simulated up to or 
beyond 1 ns, total energy (at or above -137713. 02 KJ/mol), and kinetic energy (at or beyond 31498.99 kJ/mol), 
compound 15 produced a stable combination with expected protein structure. Moreover, the examined system's 
potential energy in 1 ns of simulation at 303.15 K was -169212.01 KJ/mol (Fig. S7(C)). As a result, under stable 
temperature settings, the derived equilibrium structure of the expected spike protein S1 structure was obtained 
at 303.15 K. These findings reveal that in the MD simulation, energy conservation was met. At the end of the 
MD simulation, the coordinates of the ligand in the inserted binding site were changed (Fig. S6), demonstrating 
the utility of MD simulations after ligand docking in the binding site. Except for Asp32, Leu36, Phe42, Phe10, 
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Phe6, Asn11, and Val35, the active site residues determined by docking were changed, and new residues such 
as Cys29, Val192, Tyr33, Val30, Ala31, Ile26, Leu181, and Val63 are positioned near ligands and could involve 
in the interaction, according to exploratory molecular dynamics simulations on the complex between the ligand. 

Conclusion 

In this paper, we outline how QSAR, homology modelling, docking, and molecular dynamic 
simulation were used to investigate numerous proteins, including a suspected inhibitor of vertebrate lysozyme 
[Pseudomonas aeruginosa] and chain A, spike protein S1 [SARS-CoV-2]. The 2D-QSAR was utilized to 
investigate iminoguanidine derivatives as a negative catalyst against P. aeruginosa. The GA-MLR results 
revealed that ATSC1s and SHBint7 are the most critical descriptors for predicting inhibitor activity. As a result, 
ATSC1s have a considerable beneficial effect on pMIC50 levels, but SHBint7 has a negative effect. The data 
gathered so far will aid in predicting the activity of novel P. aeruginosa inhibitor candidates. A protein structure 
was created with the use of various templates utilizing homology modelling techniques to explore the hit 
molecule's inhibitions, and validation investigations (ERRAT, VERIFY3D, and PROCHECK) indicated that 
the predicted protein structure was reliable and of high quality. The binding mechanism of these ligands is 
revealed by docking simulation studies of anticipated protein structures, as well as the amino acid involved in 
ligand recognition. After a successful docking simulation, exploratory molecular dynamics simulations on the 
ligand-protein complex disclosed that, except for Asp32, Leu36, Phe42, Phe10, Phe6, Asn11, and Val35, the 
rest of the residues in the active site ascertained by docking were altered, and some new residues such as Cys29, 
Val192, Tyr33, Val30, Ala31, Ile26, Leu181, and Val63 were positioned in the interaction. It appears reasonable 
to conclude that selected compound 15 could be a good option for treating P. aeruginosa and the SARS-CoV-2 
virus and that it will hopefully have a long and interesting future in the identification and optimization of 
promising leads with high potential for developing new therapeutic agents. We expect that our findings should 
contribute to the development of effective antimicrobials for P. aeruginosa and the SARS-CoV–2 virus.  
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	Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic bacterial nosocomial pathogen-multi-drug resistance pathogen that causes severe infections to cystic fibrosis (CF) patients [1], hospitalized, and immunocompromised patients [2]. These P. aeru...
	Iminoguanidine is a key chemical class in drug discovery owing to its broad range of therapeutic potential, which include, antibacterial [24-26], antiviral [25,26], ability to recognize and separate anions from competitive aqueous environments [27], a...
	There is an immediate need for ways to combat the disease's increased prevalence, and counteraction seems a legitimate methodology. This computer-aided drug design (CADD) approach can contribute to many stages of the drug discovery process, notably to...
	Experimental
	A total number of 25 iminoguanidine derivatives reported by PubChem with the accession number AID_1315713 were collected to perform this study. The MIC50 values (minimum inhibitory concentrations) were converted to pMIC50 (-logMIC50) values that were ...
	Table 1. Chemical structures of iminoguanidine compounds as well as their activity levels.
	2D-QSAR Model validation
	Internal and external validations of the QSAR model are carried out by using the model to forecast training and test data. To assess the model's validity, we calculate several parameters. To begin, the coefficients of determination (,𝑅-2.) are comput...
	Where, Y and ,𝑌. denote the actual and predicted value of pMIC50, respectively. The threshold values for all the parameters used in these studies were detailed according to Edache et al [41].
	Protein generation and preparation
	Pseudomonas aeruginosa and the 2019 novel coronavirus protein sequence were downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/) with accession number KJJ19201 and PDB: 7E23, respectively. A BLAST exploration was carried out to find appro...
	Fig. 1.  The modelled protein structures of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein from Modeller v10.1 using multiple template modeling.
	Equipment and programming
	Molegro Virtual Docker 6.0 2013 [50] and Autodock Vina with PyRx v0.8 [51] were used for docking simulations with core i3 windows processors. The molecular docking simulations of all compounds were performed with the predicted modelled crystal structu...
	Molecular Dynamics Simulations
	Utilizing the CHARMM-GUI web server [53], a cubic box of TIP3 water particles with an edge distance of 10 Å was utilized to submerge the docked complex. A 0.15M KCl counterion was utilized to neutralize the system. To deliver the inner strain energies...
	Results and discussion
	The QSAR study was carried out to explain the multiple linear relationships between the 2D descriptors and the bioactivity. To explain the diversity in the bioactivity of iminoguanidine derivatives, the molecular descriptors (Centered Broto-Moreau aut...
	The following are the mathematical parameters/ values of the 2D QSAR model:
	,𝑅-2. = 0.8445; ,𝑅-𝑎𝑑𝑗-2.= 0.8238; ,𝑅-2.-,𝑅-𝑎𝑑𝑗-2. = 0.0207; 𝐿𝑂𝐹 = 0.0404; ,𝑅𝑀𝑆𝐸-𝑡𝑟𝑎𝑖𝑛. = 0.1564; ,𝑀𝐴𝐸-𝑡𝑟𝑎𝑖𝑛. = 0.1268; ,𝑅𝑆𝑆-𝑡𝑟𝑎𝑖𝑛. = 0.4402; ,𝐶𝐶𝐶-𝑡𝑟𝑎𝑖𝑛. = 0.9157; 𝑆 = 0.1713; 𝐹 = 40.7393
	,𝑄-𝐿𝑂𝑂-2. = 0.7652; ,𝑅-2.−,𝑄-𝐿𝑂𝑂-2. = 0.0793; ,𝑅𝑀𝑆𝐸-𝑐𝑣. = 0.1922; ,𝑀𝐴𝐸-𝑐𝑣. = 0.1558; ,𝑃𝑅𝐸𝑆𝑆-𝑐𝑣. = 0.6647; ,𝐶𝐶𝐶-𝑐𝑣. = 0.8685; ,𝑅-𝑌𝑠𝑐𝑟-2. = 0.1169; ,𝑄-𝑌𝑠𝑐𝑟-2. = -0.3234; ,𝑅-𝑌𝑟𝑛𝑑-2. = 0.1180; ,𝑄-𝑌𝑟𝑛𝑑-2....
	,𝑅𝑀𝑆𝐸-𝑡𝑒𝑠𝑡. = 0.4930; ,𝑀𝐴𝐸-𝑡𝑒𝑠𝑡. = 0.3954; ,𝑃𝑅𝐸𝑆𝑆-𝑡𝑒𝑠𝑡.PRESS test = 1.4585; ,𝑅-𝑡𝑒𝑠𝑡-2. = 0.7763; ,𝑄-2.−,𝐹-1. = -0.1334; ,𝑄-2.−,𝐹-2. = -0.9302; ,𝑄-2.−,𝐹-3. = -0.5455; ,𝐶𝐶𝐶-𝑡𝑒𝑠𝑡. = 0.6663; ,𝑟-𝑚-2. delta = 0.6164.
	The developed model represents a linear combination of two descriptors. One of them belongs to autocorrelation descriptor (ATSC1s) and electro-topological state atom type descriptor (SHBint7).  The model in (equation 6) indicates that the inhibitory a...
	Table 2. The validation parameters, variance inflation factor, and mean effect.
	Internal and external validation was used to estimate the significance and to ensure the validity of the models [57]. The model disclosed a cross-validation coefficient (,𝑄-𝐿𝑂𝑂-2.) value of 0.7652 and the difference between ,𝑅-2. and ,𝑄-𝐿𝑂𝑂-2...
	Table 3. Observed, predicted biological activity, and HAT of the training and predicted set of compounds against P. aeruginosa.
	To additionally affirm whether or not there is a multicollinearity issue in the revealed model as remarked by Bolboac and Lorentz [58], the VIF values of these descriptors in the preparation (training) set were registered and gotten to be under 5 demo...
	The fitting criteria ,𝑅-2., ,𝑄-𝐿𝑂𝑂-2., ,𝑅-𝑡𝑒𝑠𝑡-2., CCC and relatively low values of the errors represented by: LOF, 𝑅𝑀𝑆𝐸train, 𝑀𝐴𝐸train, 𝑅𝑆𝑆𝑡rain, 𝑅𝑀𝑆𝐸cv, 𝑀𝐴𝐸cv, 𝑃𝑅𝐸𝑆𝑆cv, 𝑅𝑀𝑆𝐸test, and 𝑀𝐴𝐸test show that there is...
	Phylogenetic tree and Homology modeling
	The sequence of P. aeruginosa and SARS-CoV-2 spike glycoproteins were obtained from the NCBI (National Center for Biotechnology Information) database (http://www.ncbi.nlm.nih.gov/) with accession number KJJ19201.1 and PDB 7E23, respectively, were used...
	Fig. 2. Phylogenetic analysis of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein homologs were constructed by the UPGMA method using the MEGA X program.
	Further analysis using MODELLER 10.1 was performed on the query sequence and the template sequences structures to confirm the phylogenetic tree analysis and a better insight into their protein structure similarity. According to the result malign3D com...
	We perform energy minimization to the assessed receptors to remove side chains and later use it in the molecular docking and MD simulations.
	Fig. 3. The weighted pair-group matrix of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein homologs were constructed by the modeller program.
	Fig. 4. Pairwise sequence alignment between the template and the query (A) and putative inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa], (B) chain A, Spike protein S1 [severe acute respiratory syndrome coronavirus 2].
	Model number two (PA-model02.pdb) and model number one (CoV-model01.pdb) having lower DOPE scores as presented in Table 4 and Table 5, respectively were considered as the best model of P. aeruginosa and SARS-CoV-2.
	Table 4. Comparative analysis of five models' DOPE scores predicted by modeller.
	Table 5. A study comparing the DOPE scores of five models predicted by the modeller.
	The crystal structures of Pseudomonas aeruginosa and SARS-CoV-2 were predicted, polished, and validated. The final predicted structure of P. aeruginosa protein has a modeller objective (molpdf) score of 886.59521, genetic algorithm 342 (GA341) score o...
	Fig. 5. The DOPE score visibility of (A) P. aeruginosa and (B) SARS-CoV-2 spike protein incurred from Modeller software.
	Validity of the structures analyzed for the P. aeruginosa receptor by the Ramachandran plot shows 94 % residues residing in most favored regions, 4.8 % in the additional allowed region, and 0.6 % in the generously allowed region. Only one residue was ...
	Fig. 6. Ramachandran plot calculation for 3D model of P. aeruginosa.
	Fig. 7. ERRAT gave a quality factor of 83.582 % to the modelled P. aeruginosa protein structure.
	Fig. 8. Verify 3D score diagram validating the modelled P. aeruginosa protein.
	Ramachandran plot analysis was carried out on the modelled SARS-CoV-2 spike protein showed 91.1 % residues residing in highly favored regions, 8.9 % in additional allowed regions, 0.0 % residues in generously allowed and disallowed regions, respective...
	Fig. 9. Ramachandran plot computation for a 3D model of SARS-CoV-2 spike protein S1.
	Fig. 10. ERRAT gave a quality factor of 79.032 % to the modelled SARS-CoV-2 spike protein structure.
	Fig. 11. Verify 3D score diagram validating the modelled SARS-CoV-2 spike protein.
	Molecular Docking Results
	Rating of docking simulation methodological analysis
	At first, the Molegro virtual docker (MVD) and AutoDock Vina programs estimated with PyRx were selected to carry out a docking-based virtual screening approach. Both Scoring Functions were supplied to select the best ligand against P. aeruginosa and S...
	Molecular docking simulation is of two types; namely the oriented docking simulation and the blind docking simulation [67,68]. Blind molecular docking simulation is a docking procedure in which the position of the enzyme's active site is unknown, and ...
	Fig. 12. Modelled protein of potential inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa] with electrostatic surface and active site cavity (green grid).
	Fig. 13. The electrostatic surface and active site cavity (green grid) of modelled protein of SARS-CoV-2 Spike protein S1.
	Table 6. The docking energies of Pseudomonas aeruginosa and SARS-CoV-2.
	The reference drug (Ruxolitinib) against the protein of putative inhibitor of vertebrate lysozyme (Pseudomonas aeruginosa) formed two hydrogen bond interactions with Cys132 and Asp193 (Fig. 14(A)). Next is compound 15 which also formed two hydrogen bo...
	Fig. 14. Hydrogen bond interactions between (A) Ruxolitinib and (B) compound 15 with modelled protein of putative inhibitor of vertebrate lysozyme [Pseudomonas aeruginosa].
	Fig. 15. Hydrogen bond interactions between (A) Ruxolitinib and (B) compound 15 with modelled protein of SARS-CoV-2 Spike protein S1.
	Again, blind molecular docking simulations were carried out for all 25 compounds including the reference compounds with PyRx v0.8 software. In the molecular docking simulations with PyRx, we make use of the modelled proteins as the target. The binding...
	Table 7. Autodock-Vina predicted binding affinity (kcal/mol) of P. aeruginosa and SARS-CoV-2 spike protein.
	Fig. 16. The 2D illustrations of interactions between Vibramycin and the modelled (A) P. aeruginosa and (B) SARS-CoV-2 spike protein receptors.
	Compounds 7 and 15 were selected based on their remarkable binding affinity of -6.9 and -7.2 kcal/mol for P. aeruginosa and SARS-CoV-2 spike protein receptors respectively compared to the reference compound’s -7.4 kcal/ mol. The molecular docking cont...
	Fig. 17. The 3D and 2D representations of interactions between compound 7 and modelled P. aeruginosa receptor.
	Fig. 18. The 3D and 2D representations of interactions between compound 15 and modelled SARS-CoV-2 spike protein receptor.
	Nevertheless, compound 15 forms two conventional hydrogen bonds with amino acid Asn11 (3.60 and 3.95 Å), one pi-donor hydrogen bond with Trp104 (3.95 Å) with the active site of modelled SARS-CoV-2 spike protein. The hydrophobic interaction was perform...
	Lipinski's rule of five aids [70] in the differentiation of drug-like and non-drug-like compounds. It forecasts a high likelihood of success or failure due to drug-likeness for compounds that meet two or more of the rules stated in Table 7. The chemic...
	Table 8. The pharmacokinetic parameter of compounds 7 and 15 using MolSoft server.
	The leads in Fig. 19(A) and 19(B) showed that these molecules display ADME profile within the desired range as presented in Table 7, and therefore the values of these parameters shed light on their drug-likeness features, which could set up an essenti...
	Fig. 19. The drug-likeness profile of (A) compound 7 (B) compound 15.
	Molecular dynamics (MD) simulations
	The study of molecular dynamics simulation in the modelled SARS-CoV-2 spike protein was being used to figure out how flexible is docked compound 15, and this evaluation was lasted up to 1 ns. To compute these RMSD, RMSF, and SASA values we used the VM...
	Fig. 20. The molecular dynamics simulation of the complexes. (A) Root mean square deviation (RMSD), (B) Root mean square fluctuations of the amino acid residues (RMSF), and (C) Solvent accessible surface area (SASA).
	Table 9. The solvent-accessible surface area of un-simulated and simulated complexes.
	A = the un-simulated protein-ligand complex; B = the simulated protein-ligand complex.
	The MD simulations of the 10 frames and the hydrogen bond information of these 10 confirmations are listed in Fig. S6. From the figures, conformation 3, 5, 8, and 9 has 4, 2, 2, and 2 hydrogen bonds, respectively. The amino acids that appear more as c...
	Fig. S7 depicts a change in total energy versus time in 1 ns of molecular dynamics simulation, which displays a slight fluctuation throughout the 1 ns. It also suggested that when the protein was simulated up to or beyond 1 ns, total energy (at or abo...



